Specimen 2017 H2 Mathematics Paper 1 Question 10

Vectors II: Lines and Planes

Answers

2x3y+z=9.{2 x - 3 y + z = - 9.}
P(2,2,1).{P \left( - 2, 2, 1 \right).}
x+26=y211=z13.{\frac{x + 2}{6} = \frac{y - 2}{-11} = \frac{z - 1}{-3}.}

Full solutions

(a)

l:r=(012)+λ(231)l: \mathbf{r} = \begin{pmatrix} 0 \\ - 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix}
Since π{\pi} is perpendicular to l,{l,} (231){\begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix}} is its normal vector.
rn=anr(231)=(121)(231)=9\begin{align*} \mathbf{r} \cdot \mathbf{n} &= \mathbf{a} \cdot \mathbf{n} \\ \mathbf{r} \cdot \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} &= \begin{pmatrix} - 1 \\ 2 \\ - 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \\ &= - 9 \\ \end{align*}
Hence the cartesian equation of π{\pi} is 2x3y+z=9  {2 x - 3 y + z = - 9 \; \blacksquare}

(b)

The point P{P} on l{l} closest to A{A} is the point of intersection between l{l} and π.{\pi.}

Substituting the equation of l{l} into the equation of π,{\pi,}

(2λ13λ2+λ)(231)=92(2λ)3(13λ)+2+λ=9\begin{align*} \begin{pmatrix} 2 \lambda \\ - 1 - 3 \lambda \\ 2 + \lambda \end{pmatrix} \cdot \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} &= - 9 \\ 2 (2 \lambda) - 3 (- 1 - 3 \lambda) + 2 + \lambda &= - 9 \end{align*}
5+14λ=914λ=14λ=1\begin{align*} 5 + 14 \lambda &= - 9 \\ 14 \lambda &= - 14 \\ \lambda &= - 1 \end{align*}
OP=(2(1)13(1)2+(1))=(221)\begin{align*} \overrightarrow{OP} &= \begin{pmatrix} 2 (- 1) \\ - 1 - 3 (- 1) \\ 2 + (- 1) \end{pmatrix} \\ &= \begin{pmatrix} - 2 \\ 2 \\ 1 \end{pmatrix} \end{align*}
Coordinates of point P(2,2,1)  {P \left( - 2, 2, 1 \right) \; \blacksquare}

(c)

Let F{F} denote the foot of perpendicular from B(4,5,10){B \left( 4, - 5, 10 \right)} to line l{l} and B{B'} denote the point obtained when B{B} is reflected about line l.{l.}
PB=OBOP=(679)\begin{align*} \overrightarrow{PB} &= \overrightarrow{OB} - \overrightarrow{OP} \\ &= \begin{pmatrix} 6 \\ - 7 \\ 9 \end{pmatrix} \end{align*}
PF=(PBd^)d^OFOP=((679)(231)(231))(231)(231)OF=(221)+4214(231)=(474)\begin{align*} \overrightarrow{PF} &= \left(\overrightarrow{PB} \cdot \mathbf{\hat{d}}\right) \mathbf{\hat{d}} \\ \overrightarrow{OF}-\overrightarrow{OP} &= \left( \frac{\begin{pmatrix} 6 \\ - 7 \\ 9 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix}}{\left| \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \right|} \right) \frac{\begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix}}{\left| \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \right|} \\ \overrightarrow{OF} &= \begin{pmatrix} - 2 \\ 2 \\ 1 \end{pmatrix} + \frac{42}{14} \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} 4 \\ - 7 \\ 4 \end{pmatrix} \end{align*}
OF=OB+OB2OB=2OFOB=2(474)(4510)=(492)\begin{align*} \overrightarrow{OF} &= \frac{\overrightarrow{OB}+\overrightarrow{OB'}}{2} \\ \overrightarrow{OB'} &= 2\overrightarrow{OF} - \overrightarrow{OB} \\ &= 2\begin{pmatrix} 4 \\ - 7 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ - 5 \\ 10 \end{pmatrix} \\ &= \begin{pmatrix} 4 \\ - 9 \\ - 2 \end{pmatrix} \end{align*}
PB=OBOP=(6113)\begin{align*} \overrightarrow{PB'} &= \overrightarrow{OB'} - \overrightarrow{OP} \\ &= \begin{pmatrix} 6 \\ - 11 \\ - 3 \end{pmatrix} \end{align*}
The line n{n} passes through P{P} and has direction vector PB.{\overrightarrow{PB'}.}
n:r=(221)+μ(6113),  μRn: \mathbf{r} = \begin{pmatrix} - 2 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ - 11 \\ - 3 \end{pmatrix}, \; \mu \in \mathbb{R}
Cartesian equation of n:{n:}
x+26=y211=z13  \frac{x + 2}{6} = \frac{y - 2}{-11} = \frac{z - 1}{-3} \; \blacksquare