2020 H2 Mathematics Paper 2 Question 4

Differentiation II: Maxima, Minima, Rates of Change

Answers

H2=22515a{H^2 = 225 - 15a}
Maximum volume =1445 cm3{= 144 \sqrt{5} \textrm{ cm}^3}
(iiia)
a=15{a=15}
(iiib)
The net forms a square with sides 152 cm{15\sqrt{2} \textrm{ cm}}

Full solutions

(i)

a+2h=30h=30a2\begin{gather*} a + 2h = 30 \\ h = \frac{30-a}{2} \end{gather*}
H2=h2a22=(30a)2a24=22515a  \begin{align*} H^2 &= h^2 - \frac{a}{2}^2 \\ &= \frac{(30-a)^2 - a^2 }{4} \\ &= 225 - 15a \; \blacksquare \end{align*}

(ii)

Let V{V} denote the volume of the pyramid
V=13a2HV2=19a4H2=19a4(22515a)=19(225a415a5)\begin{align*} V &= \frac{1}{3} a^2 H \\ V^2 &= \frac{1}{9} a^4 H^2 \\ &= \frac{1}{9} a^4 (225-15a) \\ &= \frac{1}{9} (225a^4 - 15a^5) \end{align*}
Differentiating w.r.t. a,{a,}
2VdVda=19(900a375a4)2V \frac{\mathrm{d}V}{\mathrm{d}a} = \frac{1}{9} (900a^3 - 75a^4)
At maximum V,dVda=0{V, \displaystyle \frac{\mathrm{d}V}{\mathrm{d}a} = 0}
900a375a4=0a=12  \begin{gather*} 900a^3 - 75a^4 = 0 \\ a = 12 \; \blacksquare \end{gather*}
Maximum volume=13(12)222515(12)=1445 cm3  \begin{align*} & \textrm{Maximum volume} \\ &= \frac{1}{3} (12)^2 \sqrt{225 - 15(12)} \\ &= 144\sqrt{5} \textrm{ cm}^3 \; \blacksquare \end{align*}
(iiia)
Let A{A} denote the total surface area of the four triangular faces of the pyramid
A=412ah=2a(30a2)=30aa2\begin{align*} A &= 4 \cdot \frac{1}{2} a h \\ &= 2a \left( \frac{30-a}{2} \right) \\ &= 30a - a^2 \end{align*}
dAda=302a\frac{\mathrm{d}A}{\mathrm{d}a} = 30 - 2a
At maximum A,dAda=0{A, \displaystyle \frac{\mathrm{d}A}{\mathrm{d}a} = 0}
302a=0a=15  \begin{gather*} 30-2a = 0 \\ a = 15 \; \blacksquare \end{gather*}
(iiib)
The net forms a square with sides 152 cm{15\sqrt{2} \textrm{ cm}} {\blacksquare}