2018 H2 Mathematics Paper 1 Question 10

Differentiation II: Maxima, Minima, Rates of Change

Answers

Under the conditions that V{V} is a constant
C=4LR2{C = \frac{4L}{R^2}}
Maximum value of I=3A2e{I = \frac{3A}{2\mathrm{e}}}

Full solutions

(i)

LdIdt+RI+qC=VL\frac{\mathrm{d}I}{\mathrm{d}t} + RI + \frac{q}{C} = V
Differentiating w.r.t. t,{t,}
Ld2Idt2+RdIdt+1Cdqdt=dVdtL\frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} + R \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{C} \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t}
Under the conditions that V{V} is a constant   {\; \blacksquare}
dVdt=0Ld2Idt2+RdIdt+IC=0  \begin{gather*} \frac{\mathrm{d}V}{\mathrm{d}t}=0 \\ L\frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} + R \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{I}{C} = 0 \; \blacksquare \end{gather*}

(ii)

I=AteRt2LdIdt=AeRt2LAtR2LeRt2L=AeRt2LR2LId2Idt2=AR2LeRt2LR2LdIdt\begin{align*} I &= At \mathrm{e}^{-\frac{Rt}{2L}} \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= A \mathrm{e}^{-\frac{Rt}{2L}} - At \frac{R}{2L} \mathrm{e}^{-\frac{Rt}{2L}} \\ &= A \mathrm{e}^{-\frac{Rt}{2L}} - \frac{R}{2L} I \\ \frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} &= -\frac{AR}{2L} \mathrm{e}^{-\frac{Rt}{2L}} - \frac{R}{2L}\frac{\mathrm{d}I}{\mathrm{d}t} \\ \end{align*}
Since I=AteRt2L{I=At\mathrm{e}^{-\frac{Rt}{2L}}} is a solution, we can substitute the above into the differential equation
L(AR2LeRt2LR2LdIdt)+RdIdt+IC=0AR2eRt2L+R2dIdt+IC=0AR2eRt2L+R2(AeRt2LR2LI)+IC=0\begin{gather*} L \left( -\frac{AR}{2L} \mathrm{e}^{-\frac{Rt}{2L}} - \frac{R}{2L}\frac{\mathrm{d}I}{\mathrm{d}t} \right) + R \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{I}{C} = 0 \\ -\frac{AR}{2}\mathrm{e}^{-\frac{Rt}{2L}} + \frac{R}{2} \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{I}{C} = 0 \\ -\frac{AR}{2}\mathrm{e}^{-\frac{Rt}{2L}} + \frac{R}{2} \left( A \mathrm{e}^{-\frac{Rt}{2L}} - \frac{R}{2L} I \right) + \frac{I}{C} = 0 \\ \end{gather*}
R24LI+IC=0IC=R24LC=4LR2  \begin{gather*} -\frac{R^2}{4L}I + \frac{I}{C} = 0 \\ \frac{I}{C} = \frac{R^2}{4L} \\ C = \frac{4L}{R^2} \; \blacksquare \end{gather*}

(iii)

I=Ate4t2(3)=Ate23tdIdt=Ae23t23Ate23t=(123t)Ae23td2Idt2=23Ae23t23(123t)Ae23t\begin{align*} I &= At \mathrm{e}^{-\frac{4t}{2(3)}} \\ &= At \mathrm{e}^{-\frac{2}{3}t} \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= A \mathrm{e}^{-\frac{2}{3}t} - \frac{2}{3} At \mathrm{e}^{-\frac{2}{3}t} \\ &= \left(1-\frac{2}{3}t\right)A \mathrm{e}^{-\frac{2}{3}t} \\ \frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} &= -\frac{2}{3}A \mathrm{e}^{-\frac{2}{3}t} - \frac{2}{3}\left(1-\frac{2}{3}t\right)A \mathrm{e}^{-\frac{2}{3}t} \end{align*}
At maximum I,dIdt=0{\displaystyle I, \frac{\mathrm{d}I}{\mathrm{d}t}=0}
(123t)Ae23t=0123t=0t=32\begin{gather*} \left(1-\frac{2}{3}t\right)A \mathrm{e}^{-\frac{2}{3}t} = 0\\ 1-\frac{2}{3}t = 0\\ t = \frac{3}{2} \end{gather*}
Maximum value of I=A(32)e23(32)=32Ae1=3A2e  \begin{align*} & \textrm{Maximum value of } I \\ & = A \left(\frac{3}{2}\right) \mathrm{e}^{-\frac{2}{3}\left(\frac{3}{2}\right)} \\ &= \frac{3}{2}A\mathrm{e}^{-1} \\ &= \frac{3A}{2\mathrm{e}} \; \blacksquare \end{align*}
When t=32,{t=\frac{3}{2},}
d2Idt2=23Ae23(32)0=23Ae1<0\begin{align*} \frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} &= -\frac{2}{3} A \mathrm{e}^{-\frac{2}{3}\left(\frac{3}{2}\right)} - 0 \\ &= -\frac{2}{3} A \mathrm{e}^{-1} \\ &< 0 \end{align*}
Hence I=3A2e{I=\frac{3A}{2\mathrm{e}}} is a maximum {\blacksquare}

(iv)