Math Repository
about
topic
al
year
ly
Yearly
2012
P1 Q10
Topical
Maxima
12 P1 Q10
2012 H2 Mathematics Paper 1 Question 10
Differentiation II: Maxima, Minima, Rates of Change
Answers
(i)
r
=
3
k
5
π
3
{r=\sqrt[3]{\frac{3k}{5\pi}}}
r
=
3
5
π
3
k
h
=
3
k
5
π
3
{h=\sqrt[3]{\frac{3k}{5\pi}}}
h
=
3
5
π
3
k
(ii)
r
=
3.04
{r=3.04}
r
=
3.04
h
=
4.88
{h = 4.88}
h
=
4.88
Full solutions
(i)
Volume
=
k
π
r
2
h
+
2
3
π
r
3
=
k
\begin{align*} \textrm{Volume} &= k \\ \pi r^2 h + \frac{2}{3}\pi r^3 &= k \end{align*}
Volume
π
r
2
h
+
3
2
π
r
3
=
k
=
k
h
=
k
−
2
3
π
r
3
π
r
2
\begin{equation} h = \frac{k - \frac{2}{3}\pi r^3}{\pi r^2} \end{equation}
h
=
π
r
2
k
−
3
2
π
r
3
Let
A
{A}
A
denote the external surface area
A
=
2
π
r
h
+
2
π
r
2
+
π
r
2
=
2
π
r
h
+
3
π
r
2
\begin{equation}\begin{split} \qquad A &= 2 \pi r h + 2 \pi r^2 + \pi r^2 \\ &= 2 \pi r h + 3 \pi r^2 \end{split}\end{equation}
A
=
2
π
r
h
+
2
π
r
2
+
π
r
2
=
2
π
r
h
+
3
π
r
2
Substituting
(
1
)
{(1)}
(
1
)
into
(
2
)
,
{(2),}
(
2
)
,
A
=
2
k
−
4
3
π
r
3
r
+
3
π
r
2
=
2
k
r
−
4
3
π
r
2
+
3
π
r
2
=
2
k
r
+
5
3
π
r
2
\begin{align*} A &= \frac{2k-\frac{4}{3}\pi r^3}{r} + 3 \pi r^2 \\ &= \frac{2k}{r} - \frac{4}{3}\pi r^2 + 3 \pi r^2 \\ &= \frac{2k}{r} + \frac{5}{3} \pi r^2 \end{align*}
A
=
r
2
k
−
3
4
π
r
3
+
3
π
r
2
=
r
2
k
−
3
4
π
r
2
+
3
π
r
2
=
r
2
k
+
3
5
π
r
2
d
A
d
x
=
−
2
k
r
2
+
10
3
π
r
\frac{\mathrm{d}A}{\mathrm{d}x} = -\frac{2k}{r^2} + \frac{10}{3} \pi r
d
x
d
A
=
−
r
2
2
k
+
3
10
π
r
At minimum
A
,
d
A
d
x
=
0
,
{\displaystyle A, \frac{\mathrm{d}A}{\mathrm{d}x}=0,}
A
,
d
x
d
A
=
0
,
−
2
k
r
2
+
10
3
π
r
=
0
10
3
π
r
=
2
k
r
2
r
3
=
3
k
5
π
r
=
3
k
5
π
3
■
\begin{gather*} -\frac{2k}{r^2} + \frac{10}{3} \pi r = 0 \\ \frac{10}{3} \pi r = \frac{2k}{r^2} \\ r^3 = \frac{3k}{5\pi} \\ r = \sqrt[3]{\frac{3k}{5\pi}} \; \blacksquare \end{gather*}
−
r
2
2
k
+
3
10
π
r
=
0
3
10
π
r
=
r
2
2
k
r
3
=
5
π
3
k
r
=
3
5
π
3
k
■
h
=
k
−
2
3
π
r
3
π
r
2
=
k
−
2
3
π
3
k
5
π
π
r
2
=
k
−
2
5
k
π
r
2
=
3
k
5
π
r
2
=
3
k
5
π
÷
(
3
k
5
π
3
)
2
=
(
3
k
5
π
)
1
3
=
3
k
5
π
3
■
\begin{align*} h &= \frac{k - \frac{2}{3}\pi r^3}{\pi r^2} \\ &= \frac{k - \frac{2}{3}\pi \frac{3k}{5\pi}}{\pi r^2} \\ &= \frac{k - \frac{2}{5}k }{\pi r^2} \\ &= \frac{3k}{5\pi r^2} \\ &= \frac{3k}{5\pi} \div \left( \sqrt[3]{\frac{3k}{5\pi}} \right)^2 \\ &= \left( \frac{3k}{5\pi} \right)^{\frac{1}{3}} \\ &= \sqrt[3]{\frac{3k}{5\pi}} \; \blacksquare \end{align*}
h
=
π
r
2
k
−
3
2
π
r
3
=
π
r
2
k
−
3
2
π
5
π
3
k
=
π
r
2
k
−
5
2
k
=
5
π
r
2
3
k
=
5
π
3
k
÷
(
3
5
π
3
k
)
2
=
(
5
π
3
k
)
3
1
=
3
5
π
3
k
■
d
2
A
d
x
2
=
4
k
r
3
+
10
3
π
\frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}} = \frac{4k}{r^3} + \frac{10}{3}\pi
d
x
2
d
2
A
=
r
3
4
k
+
3
10
π
When
x
=
3
k
5
π
3
,
{x = \sqrt[3]{\frac{3k}{5\pi}}, }
x
=
3
5
π
3
k
,
d
2
A
d
x
2
>
0
{\frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}}>0}
d
x
2
d
2
A
>
0
so the
A
{A}
A
is a minimum
■
{\blacksquare}
■
(ii)
A
=
2
k
r
+
5
3
π
r
2
2
(
200
)
r
+
5
3
π
r
2
=
180
400
r
+
5
3
π
r
2
−
180
=
0
\begin{gather*} A = \frac{2k}{r} + \frac{5}{3}\pi r^2 \\ \frac{2(200)}{r} + \frac{5}{3}\pi r^2 = 180 \\ \frac{400}{r} + \frac{5}{3}\pi r^2 - 180 = 0 \end{gather*}
A
=
r
2
k
+
3
5
π
r
2
r
2
(
200
)
+
3
5
π
r
2
=
180
r
400
+
3
5
π
r
2
−
180
=
0
Solving with a GC,
r
=
−
6.7587
(NA)
or
r
=
3.0372
(5 sf)
or
r
=
3.7215
(5 sf)
\begin{align*} r &= -6.7587 \textrm{ (NA)} \quad &\textrm{or} \\ r &= 3.0372 \textrm{ (5 sf)} \quad &\textrm{or} \\ r &= 3.7215 \textrm{ (5 sf)} \\ \end{align*}
r
r
r
=
−
6.7587
(NA)
=
3.0372
(5 sf)
=
3.7215
(5 sf)
or
or
Since
r
>
0
,
{r>0,}
r
>
0
,
there are two possible values of
r
■
{r \; \blacksquare}
r
■
If
r
=
3.7215
,
{r = 3.7215,}
r
=
3.7215
,
h
=
200
−
2
3
π
r
3
π
r
2
=
2.1156
\begin{align*} h &= \frac{200 - \frac{2}{3}\pi r^3}{\pi r^2} \\ &= 2.1156 \end{align*}
h
=
π
r
2
200
−
3
2
π
r
3
=
2.1156
This is not valid as
r
<
h
{r < h}
r
<
h
If
r
=
3.0372
,
{r = 3.0372,}
r
=
3.0372
,
h
=
200
−
2
3
π
r
3
π
r
2
=
4.88
(3 sf)
■
r
=
3.04
(3 sf)
■
\begin{align*} h &= \frac{200 - \frac{2}{3}\pi r^3}{\pi r^2} \\ &= 4.88 \textrm{ (3 sf)} \; \blacksquare \\ r &= 3.04 \textrm{ (3 sf)} \; \blacksquare \end{align*}
h
r
=
π
r
2
200
−
3
2
π
r
3
=
4.88
(3 sf)
■
=
3.04
(3 sf)
■
Back to top ▲