2010 H2 Mathematics Paper 2 Question 3

Differentiation II: Maxima, Minima, Rates of Change

Answers

dydx=3x+42x+2{\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{3x+4}{2\sqrt{x+2}}}
x=43{x=-\frac{4}{3}}
(iia)
±2{\pm \sqrt{2}}
(iib)
Out of syllabus
Out of syllabus

Full solutions

(i)

y=xx+2y2=x2(x+2)\begin{align*} y &= x \sqrt{x+2} \\ y^2 &= x^2 (x+2) \\ \end{align*}
Differentiating implicitly w.r.t. x,{x,}
2ydydx=2x(x+2)+x2dydx=3x2+4x2y=3x2+4x2xx+2=3x+42x+2  \begin{align*} 2y \frac{\mathrm{d}y}{\mathrm{d}x} &= 2x(x+2) + x^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3x^2+4x}{2y} \\ &= \frac{3x^2+4x}{2x\sqrt{x+2}} \\ &= \frac{3x+4}{2\sqrt{x+2}} \; \blacksquare \end{align*}
At turning point, dydx=0{\frac{\mathrm{d}y}{\mathrm{d}x}=0}
3x+42x+2=03x+4=0x=43  \begin{align*} \frac{3x+4}{2\sqrt{x+2}} &= 0 \\ 3x+4 &= 0 \\ x &= -\frac{4}{3} \; \blacksquare \end{align*}
Hence there is only one value of x{x} for which the curve has a turning point {\blacksquare}
(iia)
For y=xx+2,{y=x\sqrt{x+2}, } when x=0,{x=0,}
dydx=3(0)+420+2=22=2\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3(0)+4}{2\sqrt{0+2}} \\ &= \frac{2}{\sqrt{2}} \\ &= \sqrt{2} \end{align*}
Hence the possible values of the gradient for y2=x2(x+2){y^2=x^2(x+2)} are ±2  {\pm \sqrt{2} \; \blacksquare}
(iib)
Out of syllabus

(iii)

Out of syllabus