2015 H2 Mathematics Paper 1 Question 4

Differentiation II: Maxima, Minima, Rates of Change

Answers

A=132d2{A = \frac{1}{32} d^2}

Full solutions

Considering the perimeters of the rectangle and semicircle,
2x+2y+2x+πx=dy=d4xπx2\begin{gather*} 2x + 2y + 2x + \pi x = d \\ y = \frac{d-4x-\pi x}{2} \end{gather*}
Let A{A} denote the total area of the rectangle and semicircle
A=xy+12πx2=x(d4xπx2)+12πx2=12dx2x2\begin{align*} A &= xy + \frac{1}{2} \pi x^2 \\ &= x \left(\frac{d-4x-\pi x}{2} \right) + \frac{1}{2} \pi x^2 \\ &= \frac{1}{2}dx - 2x^2 \end{align*}
dAdx=12d4x\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{1}{2}d - 4x
At stationary values of A,{A, } dAdx=0{\displaystyle \frac{\mathrm{d}A}{\mathrm{d}x} = 0}
12d4x=0x=18d\begin{gather*} \frac{1}{2}d - 4x = 0 \\ x = \frac{1}{8}d \end{gather*}
A=12d(18d)2(18d)2=132d2  \begin{align*} A &= \frac{1}{2}d\left(\frac{1}{8}d\right) - 2 \left(\frac{1}{8}d\right)^2 \\ &= \frac{1}{32} d^2 \; \blacksquare \end{align*}
d2Adx2=4<0\begin{align*} \frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}} &= -4 \\ <0 \end{align*}
Hence A=132d2{A= \frac{1}{32} d^2} is a maximum {\blacksquare}