2020 H2 Mathematics Paper 1 Question 11

Differentiation II: Maxima, Minima, Rates of Change

Answers

tanθ=4xx2+4a+a2{\tan \theta = \frac{4x}{x^2 + 4a + a^2}}
x=4a+a2{x = \sqrt{4a+a^2}}
tanθ=24a+a2{\tan \theta = \frac{2}{\sqrt{4a+a^2}}}
The optimal point and optimal angle may not correspond to the highest chance of scoring
KDAπ4 rad{\angle KDA \approx \frac{\pi}{4} \textrm{ rad}}
0.0801θ<π2{0.0801 \leq \theta < \frac{\pi}{2}}

Full solutions

(i)

tanθ=tan(AKDAKC)=tanAKDtanAKC1+tanAKDtanAKC=a+4xax1+a+4xax=4x1+a2+4ax2=4xx2+4a+a2  \begin{align*} \tan \theta &= \tan( \angle AKD - \angle AKC ) \\ &= \frac{\tan \angle AKD - \tan \angle AKC}{1 + \tan \angle AKD \cdot \tan AKC} \\ &= \frac{\frac{a+4}{x} - \frac{a}{x} }{ 1 + \frac{a+4}{x} \cdot \frac{a}{x} } \\ &= \frac{ \frac{4}{x} }{ 1 + \frac{a^2 + 4a }{x^2} } \\ &= \frac{4x}{x^2 + 4a + a^2} \; \blacksquare \end{align*}

(ii)

Differentiating w.r.t. x,{x,}
ddx(tanθ)=4(x2+4a+a2)(4x)(2x)(x2+4a+a2)2\frac{\mathrm{d}}{\mathrm{d}x} \left( \tan \theta \right) = \frac{4(x^2+4a+a^2) - (4x)(2x)}{(x^2+4a+a^2)^2}
At maximum tanθ,ddx(tanθ)=0{\tan \theta, \displaystyle \frac{\mathrm{d}}{\mathrm{d}x} \left( \tan \theta \right) = 0}
4x2+16a+4a28x2=0x2=4a+a2x=4a+a2  \begin{gather*} 4x^2 + 16 a + 4a^2 - 8x^2 = 0 \\ x^2 = 4a + a^2 \\ x = \sqrt{4a+a^2} \; \blacksquare \end{gather*}
tanθ=44a+a24a+a2+4a+a2=24a+a24a+a2=24a+a2  \begin{align*} \tan \theta &= \frac{4 \sqrt{4 a + a^2} }{4a + a^2 + 4a + a^2} \\ &= \frac{2\sqrt{4a+a^2}}{4a+a^2} \\ &= \frac{2}{\sqrt{4a+a^2}} \; \blacksquare \end{align*}

(iii)

The optimal point and optimal angle may not correspond to the highest chance of scoring {\blacksquare}

(iv)

tanKDA=xa+4=4a+a2a+4=aa+4\begin{align*} \tan KDA &= \frac{x}{a+4} \\ &= \frac{\sqrt{4a+a^2}}{a+4} \\ &= \sqrt{\frac{a}{a+4}} \end{align*}
As a4,a4+a1{a \gg 4, \frac{a}{4+a} \approx 1}
tanKDA1KDAπ4 rad  \begin{align*} \tan \angle KDA &\approx 1 \\ \angle KDA &\approx \frac{\pi}{4} \textrm{ rad} \; \blacksquare \end{align*}

(v)

Since XY=50,  {XY = 50, \;} CD=4{CD = 4} and XC=DY,{XC = DY,}
0<a230 < a \leq 23
0<4a92 and0<a2529\begin{align*} &0 < 4a \leq 92 \quad \textrm{ and} \\ &0 < a^2 \leq 529 \end{align*}
0<4a+a26210<4a+a2621\begin{align*} & 0 < 4a + a^2 \leq 621 \\ & 0 < \sqrt{4a + a^2} \leq \sqrt{621} \end{align*}
14a+a2162124a+a22621tanθ2621\begin{align*} \frac{1}{\sqrt{4a + a^2}} &\geq \frac{1}{\sqrt{621}} \\ \frac{2}{\sqrt{4a + a^2}} &\geq \frac{2}{\sqrt{621}} \\ \tan \theta &\geq \frac{2}{\sqrt{621}} \\ \end{align*}
tan12621θ<π20.0801θ<π2  \begin{gather*} \tan^{-1} \frac{2}{\sqrt{621}} \leq \theta < \frac{\pi}{2} \\ 0.0801 \leq \theta < \frac{\pi}{2} \; \blacksquare \end{gather*}