Math Repository
about
topic
al
year
ly
Yearly
2019
P2 Q3
Topical
Maxima
19 P2 Q3
2019 H2 Mathematics Paper 2 Question 3
Differentiation II: Maxima, Minima, Rates of Change
Answers
Maximum possible volume
=
1500
6
π
cm
3
{ = 1500 \sqrt{\frac{6}{\pi}} \textrm{ cm}^3}
=
1500
π
6
cm
3
r
:
h
=
1
:
2
{r:h = 1:2}
r
:
h
=
1
:
2
Full solutions
2
π
r
h
+
2
π
r
2
=
900
h
=
1
π
r
(
450
−
π
r
2
)
\begin{gather*} 2\pi r h + 2 \pi r^2 = 900 \\ h = \frac{1}{\pi r} \left( 450 - \pi r^2 \right) \end{gather*}
2
π
r
h
+
2
π
r
2
=
900
h
=
π
r
1
(
450
−
π
r
2
)
Let
V
{V}
V
denote the volume of the cylinder
V
=
π
r
2
h
=
π
r
2
(
1
π
r
(
450
−
π
r
2
)
)
=
450
r
−
π
r
3
\begin{align*} V &= \pi r^2 h \\ &= \pi r^2 \left( \frac{1}{\pi r} \left( 450 - \pi r^2 \right) \right) \\ &= 450r - \pi r^3 \end{align*}
V
=
π
r
2
h
=
π
r
2
(
π
r
1
(
450
−
π
r
2
)
)
=
450
r
−
π
r
3
d
V
d
r
=
450
−
3
π
r
2
\frac{\mathrm{d}V}{\mathrm{d}r} = 450 - 3 \pi r^2
d
r
d
V
=
450
−
3
π
r
2
At stationary values of
V
,
{V, }
V
,
d
V
d
r
=
0
{\displaystyle \frac{\mathrm{d}V}{\mathrm{d}r} = 0}
d
r
d
V
=
0
450
−
3
π
r
2
=
0
r
=
150
π
\begin{gather*} 450 - 3 \pi r^2 = 0 \\ r = \sqrt{\frac{150}{\pi}} \end{gather*}
450
−
3
π
r
2
=
0
r
=
π
150
V
=
450
150
π
−
π
(
150
π
)
3
=
150
π
(
450
−
π
(
150
π
)
)
=
300
150
π
=
1500
6
π
cm
3
■
\begin{align*} V &= 450 \sqrt{\frac{150}{\pi}} - \pi \left( \sqrt{\frac{150}{\pi}} \right)^3 \\ &= \sqrt{\frac{150}{\pi}} \left( 450 - \pi \left( \frac{150}{\pi} \right) \right) \\ &= 300 \sqrt{\frac{150}{\pi}} \\ &= 1500 \sqrt{\frac{6}{\pi}} \textrm{ cm}^3 \; \blacksquare \end{align*}
V
=
450
π
150
−
π
(
π
150
)
3
=
π
150
(
450
−
π
(
π
150
)
)
=
300
π
150
=
1500
π
6
cm
3
■
d
2
V
d
r
2
=
−
6
π
r
<
0
\begin{align*} \frac{\mathrm{d}^{2}V}{\mathrm{d}r^{2}} &= -6 \pi r \\ <0 \end{align*}
d
r
2
d
2
V
<
0
=
−
6
π
r
Hence
V
=
1500
6
π
{V = 1500 \sqrt{\frac{6}{\pi}}}
V
=
1500
π
6
is a maximum
r
h
=
r
÷
1
π
r
(
450
−
π
r
2
)
=
π
r
2
450
−
π
r
2
=
π
150
π
450
−
π
150
π
=
150
300
=
1
2
\begin{align*} \frac{r}{h} &= r \div \frac{1}{\pi r} \left( 450 - \pi r^2 \right) \\ &= \frac{\pi r^2}{450-\pi r^2} \\ &= \frac{\pi \frac{150}{\pi}}{450 - \pi \frac{150}{\pi}} \\ &= \frac{150}{300} \\ &= \frac{1}{2} \end{align*}
h
r
=
r
÷
π
r
1
(
450
−
π
r
2
)
=
450
−
π
r
2
π
r
2
=
450
−
π
π
150
π
π
150
=
300
150
=
2
1
r
:
h
=
1
:
2
■
r:h = 1:2 \; \blacksquare
r
:
h
=
1
:
2
■
Back to top ▲