Specimen 2017 H2 Mathematics Paper 2 Question 2

Sigma Notation

Answers

Sn=13n32n2+143n.{S_n = \frac{1}{3} n^3 - 2 n^2 + \frac{14}{3} n.}
un=n25n+7.{u_n = n^2 - 5 n + 7.}

Full solutions

(i)

S1=3,{S_1 = 3,} S2=4,{S_2 = 4,} S3=5{S_3 = 5} and S4=8.{S_4 = 8.}

If Sn{S_n} is a quadratic polynomial in n,{n,} Sn=an2+bn+c.{S_n = an^2 + bn + c.}

a+b+c=34a+2b+c=49a+3b+c=516a+4b+c=8\begin{align} && \quad a + b + c &= 3 \\ && \quad 4a + 2b + c &= 4 \\ && \quad 9a + 3b + c &= 5 \\ && \quad 16a + 4b + c &= 8 \end{align}
Using a GC, there are no solutions to the above system of linear equations.

Hence Sn{S_n} cannot be a quadratic polynomial in n.  {n. \; \blacksquare}

(ii)

Sn=an3+bn2+cn+d{S_n = an^3 + bn^2 + cn + d}
a+b+c+d=38a+4b+2c+d=427a+9b+3c+d=564a+16b+4c+d=8\begin{align} && \quad a + b + c + d &= 3 \\ && \quad 8a + 4b + 2c + d &= 4 \\ && \quad 27a + 9b + 3c + d &= 5 \\ && \quad 64a + 16b + 4c + d &= 8 \end{align}
Solving with a GC, a=13,{a = \frac{1}{3},} b=2,{b = - 2,} c=143{c = \frac{14}{3}} and d=0.{d = 0.}
Sn=13n32n2+143n  S_n = \frac{1}{3} n^3 - 2 n^2 + \frac{14}{3} n \; \blacksquare

(iii)

Sn1=13(n1)32(n1)2+143(n1)=13(n33n2+3n1)2(n22n+1)+143(n1)=13n33n2+293n7\begin{align*} S_{n-1} &= \frac{1}{3}(n-1)^3 - 2(n-1)^2 + \frac{14}{3}(n-1) \\ &= \frac{1}{3}(n^3 - 3 n^2 + 3 n - 1) - 2(n^2 - 2 n + 1) + \frac{14}{3}(n-1) \\ &= \frac{1}{3} n^3 - 3 n^2 + \frac{29}{3} n - 7 \end{align*}
un=SnSn1=13n32n2+143n(13n33n2+293n7)=n25n+7  \begin{align*} u_n &= S_n - S_{n-1} \\ &= \frac{1}{3} n^3 - 2 n^2 + \frac{14}{3} n - \left( \frac{1}{3} n^3 - 3 n^2 + \frac{29}{3} n - 7 \right)\\ &= n^2 - 5 n + 7 \; \blacksquare \end{align*}