2014 H2 Mathematics Paper 1 Question 11

Differentiation II: Maxima, Minima, Rates of Change

Answers

V=13πr216r2+23πr3{V}\allowbreak {= \frac{1}{3} \pi r^2 \sqrt{16-r^2}}\allowbreak {+ \frac{2}{3}\pi r^3 }
r1=1.207,  {r_1 = 1.207, \;} r2=3.951{r_2 = 3.951}
r1=3.951,  {r_1 = 3.951, \;} h=0.625{h=0.625}

Full solutions

(i)

h=42r2=16r2\begin{align*} h &= \sqrt{4^2 - r^2} \\ &= \sqrt{16-r^2} \end{align*}
V=13πr2h+23πr3V=13πr216r2+23πr3  \begin{align*} V &= \frac{1}{3} \pi r^2 h + \frac{2}{3}\pi r^3 \\ V &= \frac{1}{3} \pi r^2 \sqrt{16-r^2} + \frac{2}{3}\pi r^3 \; \blacksquare \end{align*}
dVdx=23πr16r2+2r(πr2)2(3)16r2+2πr2=2πr(16r2)πr3316r2+2πr2=πr(323r2)316r2+2πr2\begin{align*} \frac{\mathrm{d}V}{\mathrm{d}x} &= \frac{2}{3}\pi r \sqrt{16-r^2} + \frac{-2r (\pi r^2)}{2(3)\sqrt{16-r^2}} + 2\pi r^2 \\ &= \frac{2\pi r (16-r^2) - \pi r^3}{3\sqrt{16-r^2}} + 2\pi r^2 \\ &= \frac{\pi r (32-3r^2)}{3\sqrt{16-r^2}} + 2\pi r^2 \\ \end{align*}
At maximum, dVdx=0,{\displaystyle \frac{\mathrm{d}V}{\mathrm{d}x}=0,}
πr(323r2)316r2+2πr2=02πr2=πr(3r232)316r26r=3r23216r236r2=(3r232)216r2576r236r4=9r4192r2+1024\begin{gather*} \frac{\pi r (32-3r^2)}{3\sqrt{16-r^2}} + 2\pi r^2 = 0 \\ 2\pi r^2 = \frac{\pi r (3r^2-32)}{3\sqrt{16-r^2}} \\ 6 r = \frac{3r^2-32}{\sqrt{16-r^2}} \\ 36r^2 = \frac{(3r^2-32)^2}{16-r^2} \\ 576r^2 - 36r^4 = 9r^4 - 192r^2 + 1024 \\ \end{gather*}
Hence r1{r_1} satisfies the equation
45r4768r2+1024=0  45r^4 - 768r^2 + 1024 = 0 \; \blacksquare

(ii)

Using a GC, for r>0,{r>0,}
r1=1.207 (3 dp)  orr1=3.951 (3 dp)  \begin{align*} r_1 &= 1.207 \textrm{ (3 dp)} \; \blacksquare \quad \textrm{or} \\ r_1 &= 3.951 \textrm{ (3 dp)} \; \blacksquare \quad \end{align*}

(iii)

When r1=1.207{r_1 = 1.207}
dVdx=π1.207(323(1.207)2)316(1.207)2+2π(1.207)2=18.3200\begin{align*} \frac{\mathrm{d}V}{\mathrm{d}x} &= \frac{\pi 1.207 (32-3(1.207)^2)}{3\sqrt{16-(1.207)^2}} + 2\pi (1.207)^2 \\ &= 18.320 \\ &\neq 0 \end{align*}
Hence r1=1.207{r_1 = 1.207} does not give a stationary value of V {\blacksquare}
Meanwhile, when r1=3.951{r_1 = 3.951}
dVdx=π3.951(323(3.951)2)316(3.951)2+2π(3.951)2=0.003490\begin{align*} \frac{\mathrm{d}V}{\mathrm{d}x} &= \frac{\pi 3.951 (32-3(3.951)^2)}{3\sqrt{16-(3.951)^2}} + 2\pi (3.951)^2 \\ &= 0.00349 \\ &\approx 0 \end{align*}
r1=3.951  h=1623.9512=0.625  \begin{align*} r_1 &= 3.951 \; \blacksquare \\ h &= \sqrt{16^2 - 3.951^2} \\ &= 0.625 \; \blacksquare \end{align*}

(iv)