2010 H2 Mathematics Paper 1 Question 9

Differentiation II: Maxima, Minima, Rates of Change

Answers

x=2003(k+1)3{x=\sqrt[3]{\frac{200}{3}(k+1)}}
yx=32(k+1){\frac{y}{x} = \frac{3}{2(k+1)}}
34yx<32{\frac{3}{4} \leq \frac{y}{x} < \frac{3}{2}}
k=12{k=\frac{1}{2}}

Full solutions

(i)

Volume=3003x2y=300\begin{align*} \textrm{Volume} &= 300 \\ 3x^2 y &= 300 \end{align*}
y=100x2\begin{equation} y = \frac{100}{x^2} \end{equation}
Let A{A} denote the total external surface area of the box and the lid
A=2xy+2(3xy)+2(3x2)+2(kxy)+2(3kxy)=8xy+6x2+8kxy\begin{equation}\begin{split} \qquad A &= 2xy + 2(3xy) + 2(3x^2) + 2(kxy) + 2(3kxy) \\ &= 8xy + 6x^2 + 8kxy \end{split}\end{equation}
Substituting (1){(1)} into (2),{(2),}
A=8x(100x2)+6x2+8kx(100x2)=800(k+1)x+6x2\begin{align*} A &= 8x \left( \frac{100}{x^2} \right) + 6x^2 + 8kx\left( \frac{100}{x^2} \right) \\ &= \frac{800(k+1)}{x} + 6x^2 \end{align*}
dAdx=800(k+1)x2+12x\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{-800(k+1)}{x^2} + 12x
At minimum A,dAdx=0,{A, \frac{\mathrm{d}A}{\mathrm{d}x}=0,}
800(k+1)x2+12x=012x3=800(k+1)x3=2003(k+1)\begin{gather*} \frac{-800(k+1)}{x^2} + 12x = 0 \\ 12x^3 = 800(k+1) \\ x^3 = \frac{200}{3}(k+1) \\ \end{gather*}
x=2003(k+1)3  x = \sqrt[3]{\frac{200}{3}(k+1)} \; \blacksquare
d2Adx2=1600(k+1)x3+12\frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}} = \frac{1600(k+1)}{x^3} + 12
When x=2003(k+1)3,{x=\sqrt[3]{\frac{200}{3}(k+1)}, } d2Adx2>0{\frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}}>0} so A{A} is a minimum {\blacksquare}

(ii)

Using (1),{(1),}
yx=100x3=1002003(k+1)=32(k+1)  \begin{align*} \frac{y}{x} &= \frac{100}{x^3} \\ &= \frac{100}{\frac{200}{3}(k+1)} \\ &= \frac{3}{2(k+1)} \; \blacksquare \end{align*}

(iii)

0<k11<k+122<2(k+1)43432(k+1)<32\begin{gather*} 0 < k \leq 1 \\ 1 < k+1 \leq 2 \\ 2 < 2(k+1) \leq 4 \\ \frac{3}{4} \leq \frac{3}{2}(k+1) < \frac{3}{2} \end{gather*}
34yx<32  \frac{3}{4} \leq \frac{y}{x} < \frac{3}{2} \; \blacksquare

(iv)

If the box has square ends,
y=xyx=132(k+1)=1k+1=32k=12  \begin{align*} y &= x \\ \frac{y}{x} &= 1 \\ \frac{3}{2(k+1)} &= 1 \\ k+1 &= \frac{3}{2} \\ k &= \frac{1}{2} \; \blacksquare \end{align*}