Math Repository
about
topic
al
year
ly
Yearly
2016
P2 Q1
Topical
Maxima
16 P2 Q1
2016 H2 Mathematics Paper 2 Question 1
Differentiation II: Maxima, Minima, Rates of Change
Answers
0.0251
m/min
{0.0251 \textrm{ m/min}}
0.0251
m/min
Full solutions
Let
V
{V}
V
and
h
{h}
h
denote the volume and depth of the water respectively
tan
α
=
r
h
r
h
=
0.5
r
=
1
2
h
\begin{align*} \tan \alpha &= \frac{r}{h} \\ \frac{r}{h} &= 0.5 \\ r &= \frac{1}{2}h \end{align*}
tan
α
h
r
r
=
h
r
=
0.5
=
2
1
h
V
=
1
3
π
r
2
h
=
1
3
π
(
1
2
h
)
2
h
=
1
12
π
h
3
\begin{align*} V &= \frac{1}{3} \pi r^2 h \\ &= \frac{1}{3} \pi \left( \frac{1}{2} h \right)^2 h \\ &= \frac{1}{12} \pi h^3 \end{align*}
V
=
3
1
π
r
2
h
=
3
1
π
(
2
1
h
)
2
h
=
12
1
π
h
3
d
V
d
h
=
1
4
π
h
2
\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{4}\pi h^2
d
h
d
V
=
4
1
π
h
2
d
V
d
t
=
d
V
d
h
×
d
h
d
t
0.1
=
1
4
π
h
2
×
d
h
d
t
d
h
d
t
=
2
5
π
h
2
\begin{align*} \frac{\mathrm{d}V}{\mathrm{d}t} &= \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \\ 0.1 &= \frac{1}{4} \pi h^2 \times \frac{\mathrm{d}h}{\mathrm{d}t} \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \frac{2}{5\pi h^2} \end{align*}
d
t
d
V
0.1
d
t
d
h
=
d
h
d
V
×
d
t
d
h
=
4
1
π
h
2
×
d
t
d
h
=
5
π
h
2
2
When the volume of water in the container is
3
m
3
,
{3 \textrm{ m}^3,}
3
m
3
,
1
12
π
h
3
=
3
h
=
36
π
3
\begin{align*} \frac{1}{12} \pi h^3 &= 3 \\ h &= \sqrt[3]{\frac{36}{\pi}} \end{align*}
12
1
π
h
3
h
=
3
=
3
π
36
Rate of increase of the depth of water:
d
h
d
t
=
2
5
π
÷
(
36
π
3
)
2
=
0.0251
m/min (3sf)
■
\begin{align*} \frac{\mathrm{d}h}{\mathrm{d}t} &= \frac{2}{5\pi} \div \left( \sqrt[3]{\frac{36}{\pi}} \right)^2 \\ &= 0.0251 \textrm{ m/min} \textrm{ (3sf)} \; \blacksquare \end{align*}
d
t
d
h
=
5
π
2
÷
(
3
π
36
)
2
=
0.0251
m/min
(3sf)
■
Back to top ▲