2011 H2 Mathematics Paper 2 Question 2

Differentiation II: Maxima, Minima, Rates of Change

Answers

x=n236{x = \frac{n}{2} - \frac{\sqrt{3}}{6}}

Full solutions

(i)

V=(2n2x)(n2x)x=(2n24nx2nx+4x2)x=2n2x6nx2+4x3  \begin{align*} V &= (2n-2x)(n-2x)x \\ &= (2n^2 - 4nx - 2nx + 4x^2)x \\ &= 2n^2x - 6nx^2 + 4x^3 \; \blacksquare \end{align*}

(ii)

dVdx=2n212nx+12x2\frac{\mathrm{d}V}{\mathrm{d}x} = 2n^2 - 12nx + 12x^2
At stationary values of V,{V, } dVdx=0{\frac{\mathrm{d}V}{\mathrm{d}x} = 0}
2n212nx+12x2=06x26nx+n2=0\begin{align*} 2n^2 - 12nx + 12x^2 &= 0 \\ 6x^2 - 6nx + n^2 &= 0 \end{align*}
x=6n±36n24(6)(n2)12=6n±12n212=6n±2n312=n2±36\begin{align*} x &= \frac{6n \pm \sqrt{36n^2-4(6)(n^2)}}{12} \\ &= \frac{6n \pm \sqrt{12n^2}}{12} \\ &= \frac{6n\pm 2n\sqrt{3}}{12} \\ &= \frac{n}{2} \pm \frac{\sqrt{3}}{6} \end{align*}
If x=n2+36,{x= \frac{n}{2} + \frac{\sqrt{3}}{6},} then the length cut out (2x){(2x)} will be more than n{n} which is impossible
Hence there is only one answer,
x=n236  x = \frac{n}{2} - \frac{\sqrt{3}}{6} \; \blacksquare