Specimen 2017 H2 Mathematics Paper 2 Question 3

Vectors I: Basics, Dot and Cross Products

Answers

(bi)
OE=1823a+2023b.{\overrightarrow{OE} = \frac{18}{23} \mathbf{a} + \frac{20}{23} \mathbf{b}.}
(bii)
OE:OF=8:23{OE:OF = 8:23}

Full solutions

(a)

ab=abcosθ(320)(6d7)=1336+d2+7(613)182d=6131336+d2+79d=3131343+d2132(9d)2=9(13)(43+d2)13(8118d+d2)=9(43+d2)4d2234d+666=02d2117d+333=0  \begin{gather*} \mathbf{a} \cdot \mathbf{b} = | \mathbf{a} | | \mathbf{b} | \cos \theta \\ \begin{pmatrix} 3 \\ - 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ d \\ - \sqrt{7} \end{pmatrix} = \sqrt{13} \sqrt{36+d^2+7} \left( \frac{6}{13} \right) \\ 18 - 2 d = \frac{6\sqrt{13}}{13} \sqrt{36+d^2+7} \\ 9 - d = \frac{3\sqrt{13}}{13} \sqrt{43+d^2} \\ 13^2 (9 - d)^2 = 9 (13) (43 + d^2) \\ 13(81 - 18 d + d^2) = 9(43 + d^2) \\ 4 d^2 - 234 d + 666 = 0 \\ 2 d^2 - 117 d + 333 = 0 \; \blacksquare \end{gather*}
(bi)
OC=6a,{\overrightarrow{OC}=6 \mathbf{a},} OD=4b{\overrightarrow{OD}=4 \mathbf{b}}
AD=ODOA=4baBC=OCOB=6ab\begin{align*} \overrightarrow{AD} &= \overrightarrow{OD} - \overrightarrow{OA} \\ &= 4 \mathbf{b} - \mathbf{a} \\ \overrightarrow{BC} &= \overrightarrow{OC} - \overrightarrow{OB} \\ &= 6 \mathbf{a} - \mathbf{b} \end{align*}
lAD:r=a+λ(4ba)lBC:r=b+μ(6ab)\begin{align} && \quad l_{AD}: \mathbf{r} = \mathbf{a} + \lambda (4 \mathbf{b} - \mathbf{a}) \\ && \quad l_{BC}: \mathbf{r} = \mathbf{b} + \mu (6 \mathbf{a} - \mathbf{b}) \\ \end{align}
At point E,{E,}
a+λ(4ba)=b+μ(6ab)\mathbf{a} + \lambda (4 \mathbf{b} - \mathbf{a}) = \mathbf{b} + \mu (6 \mathbf{a} - \mathbf{b})
Comparing,
1λ=6μ4λ=1μ\begin{align} && \quad 1 - \lambda &= 6 \mu \\ && \quad 4\lambda &= 1 - \mu \\ \end{align}
Solving with a GC,
λ=523,μ=323\lambda = \frac{5}{23}, \quad \mu = \frac{3}{23}
OE=a+523(4ba)=1823a+2023b  =223(9a+10b)\begin{align*} \overrightarrow{OE} &= \mathbf{a} + \frac{5}{23} (4 \mathbf{b} - \mathbf{a}) \\ &= \frac{18}{23} \mathbf{a} + \frac{20}{23} \mathbf{b} \; \blacksquare \\ &= \frac{2}{23} (9 \mathbf{a} + 10 \mathbf{b}) \end{align*}
(bii)
OF=5OD+3OC5+3=18a+20b8=14(9a+10b)\begin{align*} \overrightarrow{OF} &= \frac{5 \overrightarrow{OD} + 3 \overrightarrow{OC}}{5+3} \\ &= \frac{18 \mathbf{a} + 20 \mathbf{b}}{8} \\ &= \frac{1}{4} (9 \mathbf{a} + 10 \mathbf{b}) \end{align*}
Hence OE=823OF{\overrightarrow{OE} = \frac{8}{23} \overrightarrow{OF}}

Hence O,E{O, E} and F{F} are collinear since OE{\overrightarrow{OE}} and OF{\overrightarrow{OF}} are parallel and they share a common point O.  {O. \; \blacksquare}

OE:OF=8:23  {OE:OF = 8:23 \; \blacksquare}