Specimen 2017 H2 Mathematics Paper 1 Question 7
Complex Numbers
Answers
z=21−23i,
w=53+51i.
∣1−u2∣=2sinθ,
arg(1−u2)=θ−2π
Full solutions
(a)
2iz+(1−2i)w(1+i)z+(2+i)w=4=3
From
(1),z=2i4−(1−2i)w Substituting
(3) into
(2),
(1+i)2i4−(1−2i)w+(2+i)w=3(4+4i)−(1+i)(1−2i)w+(2i)(2+i)w=6i−(3−i)w+(−2+4i)w=−4+2i(−5+5i)w=−4+2i w=−5+5i−4+2i×−5−5i−5−5i=5030+10i=53+51i■ Substituting into
(3),z=2i4−(1−2i)(53+51i)=2i4−(1−i)=2i3+i×ii=−2−1+3i=21−23i■ (b)
1−u2=1−(cosθ+isinθ)2=1−(eiθ)2=1−e2θi=eiθe−θi−eiθeiθ=eiθ(e−θi−eiθ)=eiθ(−2isinθ)=−2iusinθ■ ∣1−u2∣=∣−2iusinθ∣=∣−2i∣∣u∣∣sinθ∣=2sinθ■ arg(1−u2)=arg(−2iusinθ)=arg(−2i)+arg(u)+arg(sinθ)=−2π+θ+0=θ−2π■