Specimen 2017 H2 Mathematics Paper 2 Question 8

Discrete Random Variables (DRVs)

Answers

y=2.{y=2.}
P(S=1)=320.{\mathrm{P}(S=1)=\frac{3}{20}.}
P(S=2)=720.{\mathrm{P}(S=2)=\frac{7}{20}.}
P(S=3)=720.{\mathrm{P}(S=3)=\frac{7}{20}.}
P(S=4)=320.{\mathrm{P}(S=4)=\frac{3}{20}.}

Full solutions

(i)

To get S=3,{S=3,} we either have 3 blue counters or 1 of each colour
P(S=3)=3y+42y+31y+2+3y+41y+3yy+2×3!=6+18y(y+4)(y+3)(y+2)=6(3y+1)(y+4)(y+3)(y+2)  \begin{align*} & \mathrm{P}(S=3) \\ & = \frac{3}{y + 4}\cdot\frac{2}{y + 3}\cdot\frac{1}{y + 2} + \frac{3}{y + 4}\cdot\frac{1}{y + 3}\cdot\frac{y}{y + 2} \times 3! \\ & = \frac{6+18y}{(y + 4)(y + 3)(y + 2)} \\ & = \frac{6(3 y + 1)}{(y + 4)(y + 3)(y + 2)} \; \blacksquare \end{align*}

(ii)

6(3y+1)(y+4)(y+3)(y+2)=720\begin{gather} \quad \quad \frac{6(3 y + 1)}{(y + 4)(y + 3)(y + 2)} = \frac{7}{20} \end{gather}
Solving (1){(1)} with a GC,
y=2  y=2 \; \blacksquare
To get S=1,{S=1,} we have 1 blue and 2 yellow counters
P(S=1)=362514×3!2!=320  \begin{align*} & \mathrm{P}(S=1) \\ & = \frac{3}{6}\cdot\frac{2}{5}\cdot\frac{1}{4} \times \frac{3!}{2!} \\ & = \frac{3}{20} \; \blacksquare \end{align*}
To get S=2,{S=2,} we either have 2 blue, 1 yellow or 1 red, 2 yellow
P(S=2)=362524×3!2!+162514×3!2!=720  \begin{align*} & \mathrm{P}(S=2) \\ & = \frac{3}{6}\cdot\frac{2}{5}\cdot\frac{2}{4} \times \frac{3!}{2!} + \frac{1}{6}\cdot\frac{2}{5}\cdot\frac{1}{4} \times \frac{3!}{2!} \\ & = \frac{7}{20} \; \blacksquare \end{align*}
To get S=4,{S=4,} we have 2 blue and 1 red counters
P(S=4)=362514×3!2!=320  \begin{align*} & \mathrm{P}(S=4) \\ & = \frac{3}{6}\cdot\frac{2}{5}\cdot\frac{1}{4} \times \frac{3!}{2!} \\ & = \frac{3}{20} \; \blacksquare \end{align*}