Specimen 2017 H2 Mathematics Paper 2 Question 9

The Normal Distribution

Answers

81.9%.{81.9\%.}
CN(5.0894,0.0056849){C \sim N( 5.0894,0.0056849 )}
5.21 cm.{5.21 \textrm{ cm}.}
0.712.{0.712.}
μ=1.19,{\mu = 1.19,} σ=0.0584.{\sigma = 0.0584.}

Full solutions

(i)

Let B{B} denote the r.v. of the radius of a randomly chosen bolt
BN(0.8,0.012)B \sim N( 0.8,0.01^2 )
Percentage required=P(0.79<B<0.82)×100%=81.9% (3 s.f.)  \begin{align*} & \textrm{Percentage required} \\ & = \textrm{P}(0.79 < B < 0.82) \times 100\% \\ & = 81.9\% \textrm{ (3 s.f.)} \; \blacksquare \end{align*}

(ii)

Let W{W} and C{C} denote the r.v. of the inside radius and the inside circumference of a randomly chosen washer respectively
WN(0.81,0.0122)C=2πWN(2π(0.81),(2π)2(0.012)2)CN(5.0894,0.0056849)  \begin{gather*} W \sim N( 0.81,0.012^2 ) \\ C = 2\pi W \sim \textrm{N}( 2\pi(0.81), (2\pi)^2 (0.012)^2 ) \\ C \sim N( 5.0894,0.0056849 ) \; \blacksquare \end{gather*}
Let c{c} denote the circumference exceeded by 5%{5\%} of the washers
P(C>c)=0.05c=5.21 (3 s.f.) cm  \begin{align*} \textrm{P}(C > c) &= 0.05 \\ c &= 5.21 \textrm{ (3 s.f.) cm} \; \blacksquare \end{align*}

(iii)

WBN(0.01,0.000244)W-B \sim \textrm{N} (0.01, 0.000244)
P(good fit)=P(B<W<B+0.04)=P(0<WB<0.04)=0.712( 3 s.f.)  \begin{align*} & \textrm{P}(\textrm{good fit}) \\ & = \textrm{P}(B < W < B+0.04) \\ & = \textrm{P}(0 < W-B < 0.04) \\ & = 0.712 \textrm{( 3 s.f.)} \; \blacksquare \end{align*}

(iv)

Let O{O} denote the r.v. of the outside radius of a randomly chosen washer
ON(μ,σ2)O \sim \textrm{N}(\mu, \sigma^2)
P(O>1.25)=0.15P(Z>1.25μσ)=0.151.25μσ=1.0364\begin{align*} \textrm{P}(O > 1.25) &= 0.15 \\ \textrm{P}(Z > \frac{1.25-\mu}{\sigma}) &= 0.15 \\ \frac{1.25-\mu}{\sigma} &= 1.0364 \\ \end{align*}
P(O<1.15)=0.25P(Z<1.15μσ)=0.251.15μσ=0.67449\begin{align*} \textrm{P}(O < 1.15) &= 0.25 \\ \textrm{P}(Z < \frac{1.15-\mu}{\sigma}) &= 0.25 \\ \frac{1.15-\mu}{\sigma} &= -0.67449 \\ \end{align*}
μ+1.0364σ=1.25μ0.67449σ=1.15\begin{align} && \quad \mu + 1.0364\sigma &= 1.25 \\ && \quad \mu -0.67449\sigma &= 1.15 \\ \end{align}
Solving with a GC,
μ=1.19 (3 s.f.)  σ=0.0584 (3 s.f.)  \begin{gather*} \mu = 1.19 \textrm{ (3 s.f.)} \; \blacksquare \\ \sigma = 0.0584 \textrm{ (3 s.f.)} \; \blacksquare \end{gather*}