2020 H2 Mathematics Paper 2 Question 2

Sigma Notation

Answers

(ai)
(A):   7,9,13,{\; 7, 9, 13, \ldots}
The sequence is increasing and diverges
(B):   5,5,5,{\; 5, 5, 5, \ldots}
The sequence is constant
(aii)
p=11{p=11}
(bi)
b=7{b=7}
(bii)
v5=5a+28{v_5 = 5a+28}
(ci)
un=3n225n+16{u_n = 3 n^2 - 25 n + 16}
(cii)
m=10{m = 10}

Full solutions

(ai)
(A): If u1=p=7,{u_1 = p = 7, }
u2=2(u1)5=2(7)5=9u3=2(u2)5=2(9)5=13\begin{align*} u_2 &= 2(u_1)-5 \\ &= 2(7)-5 \\ &= 9 \\ u_3 &= 2(u_2)-5 \\ &= 2(9)-5 \\ &= 13 \\ \end{align*}
Hence the sequence is increasing and diverges {\blacksquare}
(B): If u1=p=5,{u_1 = p = 5, }
u2=2(u1)5=2(5)5=5u3=2(u2)5=2(5)5=5\begin{align*} u_2 &= 2(u_1)-5 \\ &= 2(5)-5 \\ &= 5 \\ u_3 &= 2(u_2)-5 \\ &= 2(5)-5 \\ &= 5 \\ \end{align*}
Hence the sequence is constant {\blacksquare}
(aii)
u5=1012u45=101u4=532u35=53u3=292u25=29u2=172u15=17p=u1=11  \begin{align*} u_5 &= 101 \\ 2u_4 - 5 &= 101 \\ u_4 &= 53 \\ 2u_3 - 5 &= 53 \\ u_3 &= 29 \\ 2u_2 - 5 &= 29 \\ u_2 &= 17 \\ 2u_1 - 5 &= 17 \\ p = u_1 &= 11 \; \blacksquare \end{align*}
(bi)
u4=2v3v2+2v37=2v3b=v2=7  \begin{align*} u_4 &= 2v_3 \\ v_2 + 2 v_3 - 7 &= 2v_3 \\ b = v_2 &= 7 \; \blacksquare \end{align*}
(bii)
v5=v3+2v47=v3+2(2v3)7=5v37=5(v1+2v27)7=5(a+2(7)7)7=5a+28  \begin{align*} v_5 &= v_3 + 2v_4 - 7 \\ &= v_3 + 2(2v_3) - 7 \\ &= 5v_3 - 7 \\ &= 5(v_1 + 2v_2 - 7) - 7 \\ &= 5(a+2(7)-7)-7 \\ &= 5a + 28 \; \blacksquare \end{align*}
(ci)
un=SnSn1=n311n2+4n((n1)311(n1)2+4(n1))=n311n2+4n((n33n2+3n1)11(n22n+1)+4(n1))=3n225n+16  \begin{align*} u_n &= S_n - S_{n-1} \\ &= n^3 - 11n^2 + 4n - \Big( (n-1)^3 - 11(n-1)^2 + 4(n-1) \Big) \\ &= n^3 - 11n^2 + 4n - \Big( (n^3-3n^2+3n-1) - 11(n^2-2n+1) + 4(n-1) \Big) \\ &= 3 n^2 - 25 n + 16 \; \blacksquare \end{align*}
(cii)
Sm=S3n311n2+4n=3311(3)2+4(3)n311n2+4n60=0(n3)(n+2)(n10)=0m=3 (NA)orm=2 (NA)orm=10m=10  \begin{gather*} S_m = S_3 \\ n^3 - 11 n^2 + 4 n = 3^3 - 11(3)^2+4(3) \\ n^3 - 11 n^2 + 4 n - 60 = 0 \\ (n - 3)(n + 2)(n - 10) = 0 \\ m=3 \textrm{ (NA)} \quad \textrm{or} \quad m=- 2 \textrm{ (NA)} \quad \textrm{or} \quad m=10 \\ m = 10 \; \blacksquare \end{gather*}