2020 H2 Mathematics Paper 1 Question 7

Integration Techniques

Answers

2x+14cos4x+C{2x + \frac{1}{4} \cos 4 x + C}
π24+π8{\frac{\pi^2}{4} + \frac{\pi}{8}}
9π4{\frac{9\pi}{4}}

Full solutions

(i)

f(x)  dx2sin4x  dx=2x+14cos4x+C  \begin{align*} & \int f(x) \; \mathrm{d}x \\ & \int 2 - \sin 4 x \; \mathrm{d}x \\ & = 2x + \frac{1}{4} \cos 4 x + C \; \blacksquare \end{align*}

(ii)

012πxf(x)  dx=012π2xxsin4x  dx=[x2]012π[x(cos4x4)]012π+012πcos4x4  dx=π24+π2cos2π4[sin4x16]012π=π24+π80+0=π24+π8  \begin{align*} & \int_0^{\frac{1}{2} \pi} x f(x) \; \mathrm{d}x \\ & = \int_0^{\frac{1}{2} \pi} 2x - x \sin 4x \; \mathrm{d}x \\ & = \left[ x^2 \right]_0^{\frac{1}{2} \pi} - \left[ x \left( \frac{-\cos 4x}{4} \right) \right]_0^{\frac{1}{2} \pi} + \int_0^{\frac{1}{2} \pi} - \frac{\cos 4x}{4} \; \mathrm{d}x \\ & = \frac{\pi^2}{4} + \frac{\pi}{2} \frac{\cos 2 \pi}{4} - \left[ \frac{\sin 4x}{16} \right]_0^{\frac{1}{2} \pi} \\ & = \frac{\pi^2}{4} + \frac{\pi}{8} - 0 + 0 \\ & = \frac{\pi^2}{4} + \frac{\pi}{8} \; \blacksquare \end{align*}

(iii)

012π(f(x))2  dx=012π(2sin4x)2  dx=012π44sin4x+sin24x  dx=012π44sin4x+1cos8x2  dx=012π924sin4xcos8x2  dx=[92x+cos4xsin8x16]012π=9π4+1001+0=9π4  \begin{align*} & \int_0^{\frac{1}{2} \pi} \Big( f(x) \Big)^2 \; \mathrm{d}x \\ & = \int_0^{\frac{1}{2} \pi} \left( 2 - \sin 4x \right)^2 \; \mathrm{d}x \\ & = \int_0^{\frac{1}{2} \pi} 4 - 4 \sin 4x + \sin^2 4x \; \mathrm{d}x \\ & = \int_0^{\frac{1}{2} \pi} 4 - 4 \sin 4x + \frac{1-\cos 8x}{2} \; \mathrm{d}x \\ & = \int_0^{\frac{1}{2} \pi} \frac{9}{2} - 4 \sin 4x - \frac{\cos 8x}{2} \; \mathrm{d}x \\ & = \left[ \frac{9}{2}x + \cos 4x - \frac{\sin 8x}{16} \right]_0^{\frac{1}{2} \pi} \\ & = \frac{9\pi}{4} + 1 - 0 - 0 - 1 + 0 \\ & = \frac{9\pi}{4} \; \blacksquare \end{align*}