2020 H2 Mathematics Paper 1 Question 7
Integration Techniques
Answers
2x+41cos4x+C 4π2+8π Full solutions
(i)
∫f(x)dx∫2−sin4xdx=2x+41cos4x+C■ (ii)
∫021πxf(x)dx=∫021π2x−xsin4xdx=[x2]021π−[x(4−cos4x)]021π+∫021π−4cos4xdx=4π2+2π4cos2π−[16sin4x]021π=4π2+8π−0+0=4π2+8π■ (iii)
∫021π(f(x))2dx=∫021π(2−sin4x)2dx=∫021π4−4sin4x+sin24xdx=∫021π4−4sin4x+21−cos8xdx=∫021π29−4sin4x−2cos8xdx=[29x+cos4x−16sin8x]021π=49π+1−0−0−1+0=49π■