2020 H2 Mathematics Paper 1 Question 1

Vectors II: Lines and Planes

Answers

(113){\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}}
49.2{49.2^\circ}

Full solutions

(i)

Let d1{\mathbf{d_1}} and d2{\mathbf{d_2}} denote the two vectors provided
n1=d1×d2=(110)×(152)=(226)=2(113)\begin{align*} \mathbf{n'_1} &= \mathbf{d}_1 \times \mathbf{d}_2 \\ &= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ - 5 \\ - 2 \end{pmatrix} \\ &= \begin{pmatrix} - 2 \\ 2 \\ - 6 \end{pmatrix} \\ &= 2 \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \end{align*}
Hence a vector normal to π1{\pi_1} is (113){\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}}

(ii)

n1n2=n1n2cosθ\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta
(113)(456)=(113)(456)cosθ19=(11)(77)cosθ\begin{align*} \left|\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| &= \left| \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \right| \left| \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| \cos \theta \\ \left|19 \right| &= (\sqrt{11}) (\sqrt{77}) \cos \theta \end{align*}
cosθ=19(11)(77)θ=49.2  \begin{align*} \cos \theta &= \frac{19}{(\sqrt{11})(\sqrt{77})} \\ \theta &= 49.2^\circ \; \blacksquare \end{align*}