Math Repository
about
topic
al
year
ly
Yearly
2020
P1 Q1
Topical
Vectors II
20 P1 Q1
2020 H2 Mathematics Paper 1 Question 1
Vectors II: Lines and Planes
Answers
(i)
(
−
1
1
−
3
)
{\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}}
−
1
1
−
3
(ii)
49.
2
∘
{49.2^\circ}
49.
2
∘
Full solutions
(i)
Let
d
1
{\mathbf{d_1}}
d
1
and
d
2
{\mathbf{d_2}}
d
2
denote the two vectors provided
n
1
′
=
d
1
×
d
2
=
(
1
1
0
)
×
(
1
−
5
−
2
)
=
(
−
2
2
−
6
)
=
2
(
−
1
1
−
3
)
\begin{align*} \mathbf{n'_1} &= \mathbf{d}_1 \times \mathbf{d}_2 \\ &= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ - 5 \\ - 2 \end{pmatrix} \\ &= \begin{pmatrix} - 2 \\ 2 \\ - 6 \end{pmatrix} \\ &= 2 \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \end{align*}
n
1
′
=
d
1
×
d
2
=
1
1
0
×
1
−
5
−
2
=
−
2
2
−
6
=
2
−
1
1
−
3
Hence a vector normal to
π
1
{\pi_1}
π
1
is
(
−
1
1
−
3
)
{\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}}
−
1
1
−
3
(ii)
∣
n
1
⋅
n
2
∣
=
∣
n
1
∣
∣
n
2
∣
cos
θ
\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta
∣
n
1
⋅
n
2
∣
=
∣
n
1
∣
∣
n
2
∣
cos
θ
∣
(
−
1
1
−
3
)
⋅
(
4
5
−
6
)
∣
=
∣
(
−
1
1
−
3
)
∣
∣
(
4
5
−
6
)
∣
cos
θ
∣
19
∣
=
(
11
)
(
77
)
cos
θ
\begin{align*} \left|\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| &= \left| \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \right| \left| \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| \cos \theta \\ \left|19 \right| &= (\sqrt{11}) (\sqrt{77}) \cos \theta \end{align*}
−
1
1
−
3
⋅
4
5
−
6
∣
19
∣
=
−
1
1
−
3
4
5
−
6
cos
θ
=
(
11
)
(
77
)
cos
θ
cos
θ
=
19
(
11
)
(
77
)
θ
=
49.
2
∘
■
\begin{align*} \cos \theta &= \frac{19}{(\sqrt{11})(\sqrt{77})} \\ \theta &= 49.2^\circ \; \blacksquare \end{align*}
cos
θ
θ
=
(
11
)
(
77
)
19
=
49.
2
∘
■
Back to top ▲