Math Repository
about
topic
al
year
ly
Yearly
2020
P2 Q5
Topical
DRV
20 P2 Q5
2020 H2 Mathematics Paper 2 Question 5
Discrete Random Variables (DRVs)
Answers
(i)
0
,
4
,
10
,
25
{0, 4, 10, 25}
0
,
4
,
10
,
25
(ii)
V
a
r
(
S
)
=
360
r
2
+
300
r
−
340
(
3
r
+
1
)
2
\mathrm{Var}(S)=\frac{360 r^2 + 300 r - 340}{(3 r + 1)^2}
Var
(
S
)
=
(
3
r
+
1
)
2
360
r
2
+
300
r
−
340
(iii)
r
=
3
{r=3}
r
=
3
Full solutions
(i)
Tina's possible scores:
0
,
4
,
10
,
25
■
0, 4, 10, 25 \; \blacksquare
0
,
4
,
10
,
25
■
(ii)
Let
S
{S}
S
denote the r.v. of Tina's score
P
(
S
=
0
)
=
1
3
r
+
1
(
3
r
3
r
)
×
2
!
=
2
3
r
+
1
P
(
S
=
4
)
=
2
r
3
r
+
1
(
2
r
−
1
3
r
)
=
2
(
2
r
−
1
)
3
(
3
r
+
1
)
P
(
S
=
10
)
=
r
3
r
+
1
(
2
r
3
r
)
×
2
!
=
4
r
3
(
3
r
+
1
)
P
(
S
=
25
)
=
r
3
r
+
1
(
r
−
1
3
r
)
=
r
−
1
3
(
3
r
+
1
)
\begin{align*} \mathrm{P}(S=0) &= \frac{1}{3r+1} \left( \frac{3r}{3r} \right) \times 2! \\ &= \frac{2}{3r+1} \\ \mathrm{P}(S=4) &= \frac{2r}{3r+1} \left( \frac{2r-1}{3r} \right) \\ &= \frac{2(2r-1)}{3(3r+1)} \\ \mathrm{P}(S=10) &= \frac{r}{3r+1} \left( \frac{2r}{3r} \right) \times 2! \\ &= \frac{4r}{3(3r+1)} \\ \mathrm{P}(S=25) &= \frac{r}{3r+1} \left( \frac{r-1}{3r} \right) \\ &= \frac{r-1}{3(3r+1)} \\ \end{align*}
P
(
S
=
0
)
P
(
S
=
4
)
P
(
S
=
10
)
P
(
S
=
25
)
=
3
r
+
1
1
(
3
r
3
r
)
×
2
!
=
3
r
+
1
2
=
3
r
+
1
2
r
(
3
r
2
r
−
1
)
=
3
(
3
r
+
1
)
2
(
2
r
−
1
)
=
3
r
+
1
r
(
3
r
2
r
)
×
2
!
=
3
(
3
r
+
1
)
4
r
=
3
r
+
1
r
(
3
r
r
−
1
)
=
3
(
3
r
+
1
)
r
−
1
s
{s}
s
0
{0}
0
4
{4}
4
10
{10}
10
25
{25}
25
P
(
S
=
s
)
{\mathrm{P}(S=s)}
P
(
S
=
s
)
2
3
r
+
1
{\frac{2}{3r+1}}
3
r
+
1
2
2
(
2
r
−
1
)
3
(
3
r
+
1
)
{\frac{2(2r-1)}{3(3r+1)}}
3
(
3
r
+
1
)
2
(
2
r
−
1
)
4
r
3
(
3
r
+
1
)
{\frac{4r}{3(3r+1)}}
3
(
3
r
+
1
)
4
r
r
−
1
3
(
3
r
+
1
)
{\frac{r-1}{3(3r+1)}}
3
(
3
r
+
1
)
r
−
1
E
(
S
)
=
∑
s
s
P
(
S
=
s
)
=
8
(
2
r
−
1
)
+
40
r
+
25
(
r
−
1
)
3
(
3
r
+
1
)
=
81
r
−
33
3
(
3
r
+
1
)
=
27
r
−
11
3
r
+
1
■
\begin{align*} \mathrm{E}(S) &= \sum_s s \mathrm{P}(S=s) \\ &= \frac{8(2r-1)+40r+25(r-1)}{3(3r+1)} \\ &= \frac{81 r - 33}{3(3r+1)} \\ &= \frac{27 r - 11}{3r+1} \; \blacksquare \end{align*}
E
(
S
)
=
s
∑
s
P
(
S
=
s
)
=
3
(
3
r
+
1
)
8
(
2
r
−
1
)
+
40
r
+
25
(
r
−
1
)
=
3
(
3
r
+
1
)
81
r
−
33
=
3
r
+
1
27
r
−
11
■
E
(
S
2
)
=
∑
s
s
2
P
(
S
=
s
)
=
32
(
2
r
−
1
)
+
400
r
+
2
5
2
(
r
−
1
)
3
(
3
r
+
1
)
=
1089
r
−
657
3
(
3
r
+
1
)
=
363
r
−
219
3
r
+
1
\begin{align*} \mathrm{E}(S^2) &= \sum_s s^2 \mathrm{P}(S=s) \\ &= \frac{32(2r-1)+400r+25^2(r-1)}{3(3r+1)} \\ &= \frac{1089 r - 657}{3(3r+1)} \\ &= \frac{363 r - 219}{3r+1} \\ \end{align*}
E
(
S
2
)
=
s
∑
s
2
P
(
S
=
s
)
=
3
(
3
r
+
1
)
32
(
2
r
−
1
)
+
400
r
+
2
5
2
(
r
−
1
)
=
3
(
3
r
+
1
)
1089
r
−
657
=
3
r
+
1
363
r
−
219
V
a
r
(
S
)
=
E
(
S
2
)
−
(
E
(
S
)
)
2
=
363
r
−
219
3
r
+
1
−
(
27
r
−
11
)
2
(
3
r
+
1
)
2
=
(
363
r
−
219
)
(
3
r
+
1
)
−
(
27
r
−
11
)
2
(
3
r
+
1
)
2
=
360
r
2
+
300
r
−
340
(
3
r
+
1
)
2
■
\begin{align*} & \mathrm{Var}(S) \\ &= \mathrm{E}(S^2) - \left(\mathrm{E}(S)\right)^2 \\ &= \frac{363 r - 219}{3r+1} - \frac{(27 r - 11)^2}{(3r+1)^2} \\ &= \frac{(363 r - 219)(3 r + 1)-(27 r - 11)^2}{(3 r + 1)^2} \\ &= \frac{360 r^2 + 300 r - 340}{(3 r + 1)^2} \; \blacksquare \end{align*}
Var
(
S
)
=
E
(
S
2
)
−
(
E
(
S
)
)
2
=
3
r
+
1
363
r
−
219
−
(
3
r
+
1
)
2
(
27
r
−
11
)
2
=
(
3
r
+
1
)
2
(
363
r
−
219
)
(
3
r
+
1
)
−
(
27
r
−
11
)
2
=
(
3
r
+
1
)
2
360
r
2
+
300
r
−
340
■
(iii)
360
r
2
+
300
r
−
340
(
3
r
+
1
)
2
=
38
360
r
2
+
300
r
−
340
=
38
(
3
r
+
1
)
2
18
r
2
+
72
r
−
378
=
0
18
(
r
+
7
)
(
r
−
3
)
=
0
\begin{gather*} \frac{360 r^2 + 300 r - 340}{(3 r + 1)^2} = 38 \\ 360 r^2 + 300 r - 340 = 38 (3 r + 1)^2 \\ 18 r^2 + 72 r - 378 = 0 \\ 18(r + 7)(r - 3) = 0 \\ \end{gather*}
(
3
r
+
1
)
2
360
r
2
+
300
r
−
340
=
38
360
r
2
+
300
r
−
340
=
38
(
3
r
+
1
)
2
18
r
2
+
72
r
−
378
=
0
18
(
r
+
7
)
(
r
−
3
)
=
0
Since
r
>
0
,
{r>0,}
r
>
0
,
r
=
3
■
r=3\;\blacksquare
r
=
3
■
Back to top ▲