2020 H2 Mathematics Paper 2 Question 5

Discrete Random Variables (DRVs)

Answers

0,4,10,25{0, 4, 10, 25}
Var(S)=360r2+300r340(3r+1)2\mathrm{Var}(S)=\frac{360 r^2 + 300 r - 340}{(3 r + 1)^2}
r=3{r=3}

Full solutions

(i)

Tina's possible scores:
0,4,10,25  0, 4, 10, 25 \; \blacksquare

(ii)

Let S{S} denote the r.v. of Tina's score
P(S=0)=13r+1(3r3r)×2!=23r+1P(S=4)=2r3r+1(2r13r)=2(2r1)3(3r+1)P(S=10)=r3r+1(2r3r)×2!=4r3(3r+1)P(S=25)=r3r+1(r13r)=r13(3r+1)\begin{align*} \mathrm{P}(S=0) &= \frac{1}{3r+1} \left( \frac{3r}{3r} \right) \times 2! \\ &= \frac{2}{3r+1} \\ \mathrm{P}(S=4) &= \frac{2r}{3r+1} \left( \frac{2r-1}{3r} \right) \\ &= \frac{2(2r-1)}{3(3r+1)} \\ \mathrm{P}(S=10) &= \frac{r}{3r+1} \left( \frac{2r}{3r} \right) \times 2! \\ &= \frac{4r}{3(3r+1)} \\ \mathrm{P}(S=25) &= \frac{r}{3r+1} \left( \frac{r-1}{3r} \right) \\ &= \frac{r-1}{3(3r+1)} \\ \end{align*}
s{s} 0{0} 4{4} 10{10} 25{25}
P(S=s){\mathrm{P}(S=s)} 23r+1{\frac{2}{3r+1}} 2(2r1)3(3r+1){\frac{2(2r-1)}{3(3r+1)}} 4r3(3r+1){\frac{4r}{3(3r+1)}} r13(3r+1){\frac{r-1}{3(3r+1)}}
E(S)=ssP(S=s)=8(2r1)+40r+25(r1)3(3r+1)=81r333(3r+1)=27r113r+1  \begin{align*} \mathrm{E}(S) &= \sum_s s \mathrm{P}(S=s) \\ &= \frac{8(2r-1)+40r+25(r-1)}{3(3r+1)} \\ &= \frac{81 r - 33}{3(3r+1)} \\ &= \frac{27 r - 11}{3r+1} \; \blacksquare \end{align*}
E(S2)=ss2P(S=s)=32(2r1)+400r+252(r1)3(3r+1)=1089r6573(3r+1)=363r2193r+1\begin{align*} \mathrm{E}(S^2) &= \sum_s s^2 \mathrm{P}(S=s) \\ &= \frac{32(2r-1)+400r+25^2(r-1)}{3(3r+1)} \\ &= \frac{1089 r - 657}{3(3r+1)} \\ &= \frac{363 r - 219}{3r+1} \\ \end{align*}
Var(S)=E(S2)(E(S))2=363r2193r+1(27r11)2(3r+1)2=(363r219)(3r+1)(27r11)2(3r+1)2=360r2+300r340(3r+1)2  \begin{align*} & \mathrm{Var}(S) \\ &= \mathrm{E}(S^2) - \left(\mathrm{E}(S)\right)^2 \\ &= \frac{363 r - 219}{3r+1} - \frac{(27 r - 11)^2}{(3r+1)^2} \\ &= \frac{(363 r - 219)(3 r + 1)-(27 r - 11)^2}{(3 r + 1)^2} \\ &= \frac{360 r^2 + 300 r - 340}{(3 r + 1)^2} \; \blacksquare \end{align*}

(iii)

360r2+300r340(3r+1)2=38360r2+300r340=38(3r+1)218r2+72r378=018(r+7)(r3)=0\begin{gather*} \frac{360 r^2 + 300 r - 340}{(3 r + 1)^2} = 38 \\ 360 r^2 + 300 r - 340 = 38 (3 r + 1)^2 \\ 18 r^2 + 72 r - 378 = 0 \\ 18(r + 7)(r - 3) = 0 \\ \end{gather*}
Since r>0,{r>0,}
r=3  r=3\;\blacksquare