Substituting
z=k+ki into the equation
(k+ki)2(2+i)−8i(k+ki)+t=0(k2+2k2i−k2)(2+i)−8ki+8k+t=04k2i−2k2−8ki+8k+t=0(−2k2+8k+t)+i(4k2−8k)=0 Comparing imaginary parts,
4k2−8k4k(k−2)=0=0 Since
k=0, k=2■ Comparing real parts,
−2k2+8k+t=0 t=2(2)2−8(2)=−8■ Let
α=k+ki and
β be the second root of the equation
z2(2+i)−8iz−8=(2+i)(w−α)(w−β)=(2+i)(w2−(α+β)w+(αβ)) Comparing the constants and letting
α=k+ki,(2+i)αβ(2+i)(2+2i)β(2+6i)β=−8=−8=−8 β=2+6i−8×2−6i2−6i=22+62−16+48i=−52+56i■