2020 H2 Mathematics Paper 1 Question 3
Maclaurin Series
Answers
f′′(x)=1+sin3x−9 3x−29x2+29x3+… Full solutions
(i)
f(x)f′(x)f′′(x)=ln(1+sin3x)=1+sin3x3cos3x=(1+sin3x)2(1+sin3x)(−9sin3x)−(3cos3x)(3cos3x)=(1+sin3x)2−9sin3x−9sin23x−9cos23x=(1+sin3x)2−9sin3x−9=(1+sin3x)2−9(1+sin3x)=1+sin3x−9■ (ii)
f′′′(x)=(1+sin3x)29(−1)(3cos3x)=(1+sin3x)227cos3x f(0)f′(0)f′′(0)f′′′(0)=ln(1+sin3(0))=0=1+sin3(0)3cos3(0)=3=1+sin3(0)−9=−9=1+sin3(0)27cos3(0)=27 Maclaurin expansion for
f(x):f(x)=0+3x−2!9x2+3!27x3+…=3x−29x2+29x3+…■