2020 H2 Mathematics Paper 1 Question 9

Graphs and Transformations

Answers

The lines y=2x{y=2x} and y=12x{y=-\frac{1}{2}x} are perpendicular
(0,92]{\left( 0, \frac{9}{2} \right]}
(π243ln2) units2{\left( \frac{\pi}{2} - \frac{4}{3} \ln 2 \right) \textrm{ units}^2}

Full solutions

(i)

The line y=2x{y=2x} has gradient 2{2} and is at an angle of tan1(2){\tan^{-1}(2)} anti-clockwise with respect to the positive x-{x\textrm{-}}axis.
The line y=12x{y=-\frac{1}{2}x} has gradient 12{-\frac{1}{2}} and is at an angle of tan1(12){\tan^{-1}\left(-\frac{1}{2}\right)} anti-clockwise with respect to the positive x-{x\textrm{-}}axis.
The two lines are perpendicular since m1m2=1.{m_1m_2 = -1.} Hence
tan1(2)tan1(12)=12π  \tan^{-1}(2)- \tan^{-1}\left( -{\textstyle\frac{1}{2}} \right) = {\textstyle\frac{1}{2}}\pi \; \blacksquare

(ii)

1x2+1=k3x+4kx2+k=3x+4kx23x+k4=0\begin{gather*} \frac{1}{x^2+1} = \frac{k}{3x+4} \\ kx^2 + k = 3x + 4 \\ kx^2 - 3x + k - 4 = 0 \end{gather*}
For C1{C_1} and C2{C_2} to intersect,
324(k)(k4)094k2+16k04k216k90(2k+1)(2k9)0\begin{align*} 3^2 - 4(k)(k-4) &\geq 0 \\ 9 - 4k^2 + 16k &\geq 0 \\ 4 k^2 - 16 k - 9 &\leq 0 \\ (2 k + 1)(2 k - 9) &\leq 0 \end{align*}
12k92- \frac{1}{2} \leq k \leq \frac{9}{2}
Since k>0,{k>0,}
0<k920 < k \leq \frac{9}{2}
Set of values of k:{k:}
(0,92]  \left( 0, \frac{9}{2} \right] \; \blacksquare

(iii)

(iv)

Area of region=122(1x2+123x+4)  dx=[tan1x23ln3x+4]122=tan1(2)tan1(12)23ln10+23ln52=π223ln4=(π243ln2) units2  \begin{align*} & \textrm{Area of region} \\ & = \int_{-\frac{1}{2}}^2 \left( \frac{1}{x^2 + 1} - \frac{2}{3 x + 4} \right) \; \mathrm{d}x \\ & = \left[ \tan^{-1} x - \frac{2}{3} \ln \left| 3 x + 4\right| \right]_{-\frac{1}{2}}^2 \\ & = \tan^{-1}(2)- \tan^{-1}\left( -{\textstyle\frac{1}{2}} \right) - \frac{2}{3}\ln 10 + \frac{2}{3} \ln \frac{5}{2} \\ & = \frac{\pi}{2} - \frac{2}{3} \ln 4 \\ & = \left( \frac{\pi}{2} - \frac{4}{3} \ln 2 \right) \textrm{ units}^2 \; \blacksquare \end{align*}