2020 H2 Mathematics Paper 2 Question 1

Equations and Inequalities

Answers

y=52x25x+12{y=\frac{5}{2} x^2 - 5 x + \frac{1}{2}}

Full solutions

y=ax2+bx+cy=ax^2+bx+c
Since the curve passes through (1,2),{(1,-2),}
a+b+c=2\begin{equation}a+b+c=-2\end{equation}
dydx=2ax+b\frac{\mathrm{d}y}{\mathrm{d}x}=2ax+b
Since (1,2){(1,-2)} is a minimum point and the gradient at x=2{x=2} is 5,{5,}
2a+b=04a+b=5\begin{align} && \quad 2 a + b &= 0 \\ && \quad 4 a + b &= 5 \\ \end{align}
Solving (1),(2){(1), (2)} and (3){(3)} with a GC,
a=52,  b=5,  c=12a=\frac{5}{2}, \; b=- 5, \; c=\frac{1}{2}
Equation of the curve:
y=52x25x+12  y=\frac{5}{2} x^2 - 5 x + \frac{1}{2} \; \blacksquare