2020 H2 Mathematics Paper 1 Question 8

Arithmetic and Geometric Progressions (APs, GPs)

Answers

(ai)
u30=952{u_{30}=\frac{95}{2}}
(aii)
33452=1672.5{\frac{3345}{2}=1672.5}
(bi)
S=20{S_{\infty}= 20}
(bii)
Smallest possible value of n=18{n=18}

Full solutions

(ai)
u5=10a+4d=104+4d=10d=32\begin{gather*} u_5 = 10 \\ a+4d = 10 \\ 4+4d = 10 \\ d = \frac{3}{2} \end{gather*}
u30=a+(n1)d=4+(301)32=952  \begin{align*} u_{30} &= a + \left( n - 1 \right) d \\ &= 4 + \left( 30 - 1 \right) \frac{3}{2} \\ &= \frac{95}{2} \; \blacksquare \end{align*}
(aii)
Sum of the 21st term to the 50th term inclusive
=S50S20=502(2(4)+49(32))202(2(4)+19(32))=33452  \begin{align*} &= S_{50} - S_{20} \\ &= \frac{50}{2}\Big(2(4)+49(\frac{3}{2})\Big) - \frac{20}{2}\Big(2(4)+19(\frac{3}{2})\Big) \\ &= \frac{3345}{2} \; \blacksquare \end{align*}
(bi)
u5=1024625ar4=10246254r4=1024625r4=256625\begin{gather*} u_5 = \frac{1024}{625} \\ ar^4 = \frac{1024}{625} \\ 4r^4 = \frac{1024}{625} \\ r^4 = \frac{256}{625} \\ \end{gather*}
Since the common ratio is positive,
r=45r=\frac{4}{5}
S=a1r=4145=20  \begin{align*} S_{\infty} &= \frac{a}{1-r} \\ &= \frac{4}{1-\frac{4}{5}} \\ &= 20 \; \blacksquare \end{align*}
(bii)
Sn>19.6a(1rn)1r>19.64(10.8n)10.8>19.60.8n1>0.980.8n<0.02  \begin{gather*} S_n > 19.6 \\ \frac{a\left(1-r^{n}\right)}{1-r} > 19.6 \\ \frac{4\Big( 1 - 0.8^n \Big)}{1-0.8} > 19.6 \\ 0.8^n - 1 > 0.98 \\ 0.8^n < 0.02 \; \blacksquare \end{gather*}
nln0.8<ln0.02n>ln0.02ln0.8n>17.531\begin{gather*} n \ln 0.8 < \ln 0.02 \\ n > \frac{\ln 0.02}{\ln 0.8} \\ n > 17.531 \end{gather*}
Smallest possible value of n=18  {n=18 \; \blacksquare}