Math Repository
about
topic
al
year
ly
Yearly
2020
P1 Q8
Topical
AP/GP
20 P1 Q8
2020 H2 Mathematics Paper 1 Question 8
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(ai)
u
30
=
95
2
{u_{30}=\frac{95}{2}}
u
30
=
2
95
(aii)
3345
2
=
1672.5
{\frac{3345}{2}=1672.5}
2
3345
=
1672.5
(bi)
S
∞
=
20
{S_{\infty}= 20}
S
∞
=
20
(bii)
Smallest possible value of
n
=
18
{n=18}
n
=
18
Full solutions
(ai)
u
5
=
10
a
+
4
d
=
10
4
+
4
d
=
10
d
=
3
2
\begin{gather*} u_5 = 10 \\ a+4d = 10 \\ 4+4d = 10 \\ d = \frac{3}{2} \end{gather*}
u
5
=
10
a
+
4
d
=
10
4
+
4
d
=
10
d
=
2
3
u
30
=
a
+
(
n
−
1
)
d
=
4
+
(
30
−
1
)
3
2
=
95
2
■
\begin{align*} u_{30} &= a + \left( n - 1 \right) d \\ &= 4 + \left( 30 - 1 \right) \frac{3}{2} \\ &= \frac{95}{2} \; \blacksquare \end{align*}
u
30
=
a
+
(
n
−
1
)
d
=
4
+
(
30
−
1
)
2
3
=
2
95
■
(aii)
Sum of the 21st term to the 50th term inclusive
=
S
50
−
S
20
=
50
2
(
2
(
4
)
+
49
(
3
2
)
)
−
20
2
(
2
(
4
)
+
19
(
3
2
)
)
=
3345
2
■
\begin{align*} &= S_{50} - S_{20} \\ &= \frac{50}{2}\Big(2(4)+49(\frac{3}{2})\Big) - \frac{20}{2}\Big(2(4)+19(\frac{3}{2})\Big) \\ &= \frac{3345}{2} \; \blacksquare \end{align*}
=
S
50
−
S
20
=
2
50
(
2
(
4
)
+
49
(
2
3
)
)
−
2
20
(
2
(
4
)
+
19
(
2
3
)
)
=
2
3345
■
(bi)
u
5
=
1024
625
a
r
4
=
1024
625
4
r
4
=
1024
625
r
4
=
256
625
\begin{gather*} u_5 = \frac{1024}{625} \\ ar^4 = \frac{1024}{625} \\ 4r^4 = \frac{1024}{625} \\ r^4 = \frac{256}{625} \\ \end{gather*}
u
5
=
625
1024
a
r
4
=
625
1024
4
r
4
=
625
1024
r
4
=
625
256
Since the common ratio is positive,
r
=
4
5
r=\frac{4}{5}
r
=
5
4
S
∞
=
a
1
−
r
=
4
1
−
4
5
=
20
■
\begin{align*} S_{\infty} &= \frac{a}{1-r} \\ &= \frac{4}{1-\frac{4}{5}} \\ &= 20 \; \blacksquare \end{align*}
S
∞
=
1
−
r
a
=
1
−
5
4
4
=
20
■
(bii)
S
n
>
19.6
a
(
1
−
r
n
)
1
−
r
>
19.6
4
(
1
−
0.
8
n
)
1
−
0.8
>
19.6
0.
8
n
−
1
>
0.98
0.
8
n
<
0.02
■
\begin{gather*} S_n > 19.6 \\ \frac{a\left(1-r^{n}\right)}{1-r} > 19.6 \\ \frac{4\Big( 1 - 0.8^n \Big)}{1-0.8} > 19.6 \\ 0.8^n - 1 > 0.98 \\ 0.8^n < 0.02 \; \blacksquare \end{gather*}
S
n
>
19.6
1
−
r
a
(
1
−
r
n
)
>
19.6
1
−
0.8
4
(
1
−
0.
8
n
)
>
19.6
0.
8
n
−
1
>
0.98
0.
8
n
<
0.02
■
n
ln
0.8
<
ln
0.02
n
>
ln
0.02
ln
0.8
n
>
17.531
\begin{gather*} n \ln 0.8 < \ln 0.02 \\ n > \frac{\ln 0.02}{\ln 0.8} \\ n > 17.531 \end{gather*}
n
ln
0.8
<
ln
0.02
n
>
ln
0.8
ln
0.02
n
>
17.531
Smallest possible value of
n
=
18
■
{n=18 \; \blacksquare}
n
=
18
■
Back to top ▲