2020 H2 Mathematics Paper 1 Question 5

Vectors I: Basics, Dot and Cross Products

Answers

a{\mathbf{a}} is parallel to b{\mathbf{b}}
(bi)
The set of all possible positions of the point R{R} forms a line passing through point P{P} and parallel to the direction vector OQ{\overrightarrow{OQ}}
(bii)
3x5y+2z=5{3 x - 5 y + 2 z = - 5}
The set of all possible positions of the point R{R} forms a plane passing through point P{P} and perpendicular to the normal vector OQ{\overrightarrow{OQ}}

Full solutions

(a)

a×b=b×aa×b=a×b2a×b=0a×b=0\begin{align*} \mathbf{a}\times\mathbf{b} &= \mathbf{b} \times \mathbf{a} \\ \mathbf{a}\times\mathbf{b} &= -\mathbf{a} \times \mathbf{b} \\ 2 \mathbf{a} \times \mathbf{b} &= 0 \\ \mathbf{a} \times \mathbf{b} &= 0 \end{align*}
Since a{\mathbf{a}} and b{\mathbf{b}} are non-zero and a×b=0,{\mathbf{a}\times\mathbf{b}=0, } a{\mathbf{a}} is parallel to b  {\mathbf{b} \; \blacksquare}
(bi)
From (a), rp{\mathbf{r}-\mathbf{p}} is parallel to q{\mathbf{q}}, or rp=0{\mathbf{r}-\mathbf{p}=\mathbf{0}}. Hence
rp=λqr=p+λq,  λR\begin{gather*} \mathbf{r}-\mathbf{p} = \lambda \mathbf{q} \\ \mathbf{r} = \mathbf{p} + \lambda \mathbf{q}, \; \lambda \in \mathbb{R} \end{gather*}
Hence the set of all possible positions of the point R{R} forms a line passing through point P{P} and parallel to the direction vector OQ  {\overrightarrow{OQ} \; \blacksquare}
(bii)
(rp)q=0rqpq=0\begin{align*} (\mathbf{r}-\mathbf{p}) \cdot \mathbf{q} &= 0 \\ \mathbf{r} \cdot \mathbf{q} - \mathbf{p} \cdot \mathbf{q} &= 0 \\ \end{align*}
rq=pqr(352)=(124)(352)(xyz)(352)=5\begin{align*} \mathbf{r} \cdot \mathbf{q} &= \mathbf{p} \cdot \mathbf{q} \\ \mathbf{r} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} &= \begin{pmatrix} - 1 \\ 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix}x\\y\\z\end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} &= - 5 \\ \end{align*}
3x5y+2z=5  3 x - 5 y + 2 z = - 5 \; \blacksquare
The set of all possible positions of the point R{R} forms a plane passing through point P{P} and perpendicular to the normal vector OQ  {\overrightarrow{OQ} \; \blacksquare}