2020 H2 Mathematics Paper 2 Question 8

Permutations and Combinations (P&C)
Probability

Answers

r=6{r=6}

Full solutions

(i)

P(R=1)=(171)(1111)(2812)=11789515\begin{align*} \textrm{P}\left(R=1\right) & = \frac{{17 \choose 1}{{11 \choose 11}}}{{28 \choose 12}} \\ & = \frac{1}{1789515} \end{align*}
P(R=2)=(172)(1110)(2812)=881789515\begin{align*} \textrm{P}\left(R=2\right) & = \frac{{17 \choose 2}{{11 \choose 10}}}{{28 \choose 12}} \\ & = \frac{88}{1789515} \end{align*}
Hence P(R=1)<P(R=2)  {\textrm{P}\left(R=1\right) < \textrm{P}\left(R=2\right) \; \blacksquare}

(ii)

P(R=4)=15  P(R=3)(17+r4)(118)(28+r12)=15(17+r3)(119)(28+r12)(17+r4)(118)=15(17+r3)(119)(17+r)!4!(13+r)!165=15(17+r)!3!(14+r)!5514+r=15×55×4!3!×16514+r=20r=6  \begin{align*} \textrm{P}\left(R=4\right) &= 15 \; \textrm{P}\left(R=3\right) \\ \frac{{17+r \choose 4}{11 \choose 8}}{28+r \choose 12} &= \frac{15{17+r \choose 3}{11 \choose 9}}{28+r \choose 12} \\ {17+r \choose 4}{11 \choose 8} &= 15{17+r \choose 3}{11 \choose 9} \\ \frac{(17+r)!}{4!(13+r)!} 165 &= 15\cdot\frac{(17+r)!}{3!(14+r)!}\cdot 55 \\ 14+r &= \frac{15\times55\times4!}{3!\times165} \\ 14+r &= 20 \\ r &= 6 \; \blacksquare \end{align*}