2020 H2 Mathematics Paper 1 Question 4
Complex Numbers
Answers
212(cos125π+isin125π) 2(cos12π+isin12π), 2(cos12−11π+isin12−11π) Full solutions
(i)
z1z2z3=1+3i=2ei3π=1−i=2ei4−π=2(cos6π+isin6π)=2ei6π z2z3z1=(2ei4−π)(2ei6π)2ei3π=22ei12−π2ei3π=2ei(3π+12π)=212ei125π=212(cos125π+isin125π)■ (ii)
z2z3z1z4z2z3z1∣z4∣212rr=1=1=1=2 Since
z2z3z1z4 is purely imaginary, for
k∈Z,arg(z2z3z1z4)=2π+kπargz4+arg(z2z3z1)=2π+kπθ+125π=2π+kπθ=12π+kπ Since
−π<θ≤π, k=0,−1θ=12π or θ=12−11π z4or z4=2(cos12π+isin12π)■=2(cos12−11π+isin12−11π)■