Math Repository
about
topic
al
year
ly
Yearly
2020
P1 Q10
Topical
DE
20 P1 Q10
2020 H2 Mathematics Paper 1 Question 10
Differential Equations (DEs)
Answers
(i)
d
P
d
t
=
−
0.03
P
{\frac{\mathrm{d}P}{\mathrm{d}t} = -0.03 P}
d
t
d
P
=
−
0.03
P
(ii)
P
=
A
e
−
0.03
t
{P = A\mathrm{e}^{-0.03t}}
P
=
A
e
−
0.03
t
The number of sheep will approach
0
{0}
0
if this situation continues over many years
(iii)
d
P
d
t
=
n
−
0.03
P
{\frac{\mathrm{d}P}{\mathrm{d}t} = n - 0.03P}
d
t
d
P
=
n
−
0.03
P
(iv)
P
=
100
3
(
n
−
A
e
−
0.03
t
)
{P = \frac{100}{3} \left( n-A\mathrm{e}^{-0.03t} \right)}
P
=
3
100
(
n
−
A
e
−
0.03
t
)
(v)
n
=
15
{n=15}
n
=
15
Full solutions
(i)
d
P
d
t
=
−
0.03
P
■
\frac{\mathrm{d}P}{\mathrm{d}t} = -0.03 P \; \blacksquare
d
t
d
P
=
−
0.03
P
■
(ii)
1
P
d
P
d
t
=
−
0.03
∫
1
P
d
P
=
∫
−
0.03
d
t
ln
P
=
−
0.03
t
+
c
P
=
e
−
0.03
t
+
c
P
=
A
e
−
0.03
t
■
\begin{gather*} \frac{1}{P} \frac{\mathrm{d}P}{\mathrm{d}t} = -0.03 \\ \int \frac{1}{P} \; \mathrm{d}P = \int -0.03 \; \mathrm{d}t \\ \ln P = -0.03t + c \\ P = \mathrm{e}^{-0.03t+c} \\ P = A\mathrm{e}^{-0.03t} \; \blacksquare \end{gather*}
P
1
d
t
d
P
=
−
0.03
∫
P
1
d
P
=
∫
−
0.03
d
t
ln
P
=
−
0.03
t
+
c
P
=
e
−
0.03
t
+
c
P
=
A
e
−
0.03
t
■
As
t
→
∞
,
e
−
0.03
t
→
0
{t \to \infty, \mathrm{e}^{-0.03t} \to 0}
t
→
∞
,
e
−
0.03
t
→
0
P
→
0
P \to 0
P
→
0
Hence the number of sheep will approach
0
{0}
0
if this situation continues over many years
(iii)
d
P
d
t
=
n
−
0.03
P
■
\frac{\mathrm{d}P}{\mathrm{d}t} = n - 0.03P \; \blacksquare
d
t
d
P
=
n
−
0.03
P
■
(iv)
∫
1
n
−
0.03
P
d
P
=
∫
1
d
t
1
−
0.03
ln
∣
n
−
0.03
P
∣
=
t
+
C
∣
n
−
0.03
P
∣
=
e
−
0.03
t
−
0.03
C
∣
n
−
0.03
P
∣
=
e
−
0.03
C
e
−
0.03
t
n
−
0.03
P
=
A
e
−
0.03
t
P
=
n
−
A
e
−
0.03
t
0.03
P
=
100
3
(
n
−
A
e
−
0.03
t
)
■
\begin{gather*} \int \frac{1}{n-0.03P} \; \mathrm{d}P = \int 1 \; \mathrm{d}t \\ \frac{1}{-0.03} \ln |n-0.03P| = t + C \\ |n-0.03P| = \mathrm{e}^{-0.03t-0.03C} \\ |n-0.03P| = \mathrm{e}^{-0.03C}\mathrm{e}^{-0.03t} \\ n-0.03P = A\mathrm{e}^{-0.03t} \\ P = \frac{n-A\mathrm{e}^{-0.03t}}{0.03} \\ P = \frac{100}{3} \left( n-A\mathrm{e}^{-0.03t} \right) \; \blacksquare \end{gather*}
∫
n
−
0.03
P
1
d
P
=
∫
1
d
t
−
0.03
1
ln
∣
n
−
0.03
P
∣
=
t
+
C
∣
n
−
0.03
P
∣
=
e
−
0.03
t
−
0.03
C
∣
n
−
0.03
P
∣
=
e
−
0.03
C
e
−
0.03
t
n
−
0.03
P
=
A
e
−
0.03
t
P
=
0.03
n
−
A
e
−
0.03
t
P
=
3
100
(
n
−
A
e
−
0.03
t
)
■
(v)
As
t
→
∞
,
e
−
0.03
t
→
0
{t \to \infty, \mathrm{e}^{-0.03t} \to 0}
t
→
∞
,
e
−
0.03
t
→
0
P
→
100
3
n
500
=
100
3
n
n
=
15
■
\begin{align*} P &\to \frac{100}{3}n \\ 500 &= \frac{100}{3}n \\ n &= 15 \; \blacksquare \end{align*}
P
500
n
→
3
100
n
=
3
100
n
=
15
■
Back to top ▲