Since all coefficients are real, by the Conjugate Root Theorem,
x=(2−3i)∗=2+3i is also a root
4x4−20x3+sx2−56x+t=(x−(2−3i))(x−(2+3i))(ax2+bx+c)=(x2−4x+13)(ax2+bx+c) Comparing coefficients,
x4:x3:x1:x0:x2:a=4b−4a=−20b=−4−4c+13b=−56c=1t=13ct=13■s=c−4b+13as=69■ 4x4−20x3+sx2−56x+t=(x2−4x+13)(4x2−4x+1)=(x2−4x+13)(2x−1)2 x=2±3i or x=21 (repeated) Other roots:
2+3i,21 (repeated)■