2014 H2 Mathematics Paper 2 Question 4

Complex Numbers

Answers

Out of syllabus
(bi)
w6=64eπi{w^6 = 64 \mathrm{e}^{\pi \mathrm{i}}}
(bii)
Smallest positive whole number n=5,11,17{n=5,11,17}

Full solutions

(a)

Out of syllabus
(bi)
basic angle=tan113=π6argw=π6w=(3)2+12=2\begin{align*} \textrm{basic angle} &= \tan^{-1}\frac{1}{\sqrt{3}} \\ &= \frac{\pi}{6} \\ \arg w &= -\frac{\pi}6 \\ \left| w \right| &= \sqrt{\left(\sqrt{3}\right)^2 + 1^2} \\ &= 2 \end{align*}
w6=(2e16πi)6=26ei6(π6)=64ei(π)=64eπi  \begin{align*} w^6 &= \left( 2 \mathrm{e}^{- \frac{1}{6} \pi \mathrm{i}} \right)^6 \\ &= 2^6 \, \mathrm{e}^{\mathrm{i}6(-\frac{\pi}{6})} \\ &= 64 \, \mathrm{e}^{\mathrm{i}(-\pi)} \\ &= 64 \mathrm{e}^{\pi \mathrm{i}} \; \blacksquare \end{align*}
(bii)
wnw=(2e16πi)n2e16πi=2n1ei(nπ6π6)\begin{align*} \frac{w^n}{w^*} &= \frac{\left(2 \mathrm{e}^{- \frac{1}{6} \pi \mathrm{i}}\right)^n}{2 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}} \\ &= 2^{n-1} \, \mathrm{e}^{\mathrm{i} \left( -\frac{n\pi}{6}-\frac{\pi}6 \right)} \end{align*}
Since wnw{\displaystyle \frac{w^n}{w^*}} is a real number, for kZ,{k \in \mathbb{Z}, }
nπ6π6=kπn1=6kn=6k1\begin{align*} -\frac{n\pi}{6}-\frac{\pi}6 &= k \pi \\ -n - 1 = 6k \\ n = -6k-1 \end{align*}
Hence the smallest three positive whole number values of n{n} are (when k=1,2,3{k=-1,-2,-3})
n=5,11,17  n=5, 11, 17 \; \blacksquare