Since all coefficients are real, by the Conjugate Root Theorem,
x=(−2+i)∗=−2−i is also a root
x4+4x3+x2+ax+b=(x−(−2+i))(x−(−2−i))(cx2+dx+e)=(x2+4x+5)(cx2+dx+e) Comparing coefficients,
x4:x3:x2:x1:x0:c=1d+4c=4d=0e+4d+5c=1e=−4a=4e+5da=−16■b=5eb=−20■ cx2+dx+e=0x2−4=0(x+2)(x−2)=0x=−2 or x=2 Other roots:
x=−2−i,x=−2,x=2■