2007 H2 Mathematics Paper 1 Question 7

Complex Numbers

Answers

Second root =reiθ{=r\mathrm{e}^{-\mathrm{i}\theta}}
Out of syllabus
Out of syllabus

Full solutions

(i)

Since P(z){P(z)} has real coefficients, by the conjugate root theorem, a second roots is reiθ  {r\mathrm{e}^{-\mathrm{i}\theta} \; \blacksquare}
quadratic factor=(zreiθ)(zreiθ)=z2(reiθ+reiθ)z+reiθreiθ=z22Re(z)z+r2=z22rzcosθ+r2  \begin{align*} & \textrm{quadratic factor} \\ &= \left( z - r\mathrm{e}^{\mathrm{i}\theta} \right) \left( z - r\mathrm{e}^{-\mathrm{i}\theta} \right) \\ &= z^2 - (r\mathrm{e}^{\mathrm{i}\theta}+r\mathrm{e}^{-\mathrm{i}\theta})z + r\mathrm{e}^{\mathrm{i}\theta}r\mathrm{e}^{-\mathrm{i}\theta} \\ &= z^2 - 2\textrm{Re}(z)z + r^2 \\ &= z^2 - 2rz\cos \theta + r^2 \; \blacksquare \end{align*}

(ii)

Out of syllabus

(iii)

Out of syllabus