Math Repository
about
topic
al
year
ly
Yearly
2012
P1 Q6
Topical
Complex Numbers
12 P1 Q6
2012 H2 Mathematics Paper 1 Question 6
Complex Numbers
Answers
(i)
(
1
−
3
c
2
)
+
i
(
3
c
−
c
3
)
{(1 -3 c^2) + \mathrm{i}(3c-c^3)}
(
1
−
3
c
2
)
+
i
(
3
c
−
c
3
)
(ii)
1
+
i
3
{1+\mathrm{i}\sqrt{3}}
1
+
i
3
or
1
−
i
3
{1-\mathrm{i}\sqrt{3}}
1
−
i
3
(iii)
Smallest
n
=
10
{n=10}
n
=
10
∣
z
n
∣
=
1024
{\left|z^n\right| = 1024}
∣
z
n
∣
=
1024
arg
z
n
=
2
π
3
{\arg z^n = \frac{2\pi}{3}}
ar
g
z
n
=
3
2
π
Full solutions
(i)
z
3
=
(
1
+
i
c
)
3
=
(
1
+
i
c
)
2
(
1
+
i
c
)
=
(
1
+
2
i
c
−
c
2
)
(
1
+
i
c
)
=
1
+
2
i
c
−
c
2
+
i
c
−
2
c
2
−
i
c
3
=
(
1
−
3
c
2
)
+
i
(
3
c
−
c
3
)
■
\begin{align*} z^3 &= (1+\mathrm{i}c)^3 \\ &= (1+\mathrm{i}c)^2(1+\mathrm{i}c) \\ &= (1+2\mathrm{i}c - c^2)(1+\mathrm{i}c) \\ &= 1+2\mathrm{i}c - c^2 + \mathrm{i}c - 2c^2 - \mathrm{i}c^3 \\ &= (1 -3 c^2) + \mathrm{i}(3c-c^3) \; \blacksquare \end{align*}
z
3
=
(
1
+
i
c
)
3
=
(
1
+
i
c
)
2
(
1
+
i
c
)
=
(
1
+
2
i
c
−
c
2
)
(
1
+
i
c
)
=
1
+
2
i
c
−
c
2
+
i
c
−
2
c
2
−
i
c
3
=
(
1
−
3
c
2
)
+
i
(
3
c
−
c
3
)
■
(ii)
Im
(
z
3
)
=
0
3
c
−
c
3
=
0
c
(
3
−
c
2
)
=
0
c
=
±
3
or
c
=
0
(NA)
\begin{gather*} \textrm{Im}(z^3) = 0 \\ 3c-c^3 = 0 \\ c(3-c^2) = 0 \\ c = \pm \sqrt{3} \; \textrm{ or } \; c = 0 \textrm{(NA)} \end{gather*}
Im
(
z
3
)
=
0
3
c
−
c
3
=
0
c
(
3
−
c
2
)
=
0
c
=
±
3
or
c
=
0
(NA)
z
=
1
+
i
3
or
z
=
1
−
i
3
■
z=1+\mathrm{i}\sqrt{3} \; \textrm{ or } \; z=1-\mathrm{i}\sqrt{3} \; \blacksquare
z
=
1
+
i
3
or
z
=
1
−
i
3
■
(iii)
z
=
1
−
i
3
z=1-\mathrm{i}\sqrt{3}
z
=
1
−
i
3
∣
z
n
∣
>
1000
∣
z
∣
n
>
1000
1
2
+
(
3
)
2
>
1000
2
n
>
1000
n
ln
2
>
ln
1000
n
>
9.9658
\begin{align*} \left| z^n \right | &> 1000 \\ \left| z \right |^n &> 1000 \\ \sqrt{1^2 + \left(\sqrt{3}\right)^2} &> 1000 \\ 2^n &> 1000 \\ n \ln 2 &> \ln 1000 \\ n &> 9.9658 \end{align*}
∣
z
n
∣
∣
z
∣
n
1
2
+
(
3
)
2
2
n
n
ln
2
n
>
1000
>
1000
>
1000
>
1000
>
ln
1000
>
9.9658
Hence the smallest positive integer
n
=
10
■
{n = 10 \; \blacksquare}
n
=
10
■
∣
z
n
∣
=
2
10
=
1024
■
\begin{align*} \left| z^n \right | &= 2^{10} \\ &= 1024 \; \blacksquare \end{align*}
∣
z
n
∣
=
2
10
=
1024
■
basic angle
=
tan
−
1
3
=
π
3
arg
z
=
−
π
3
\begin{align*} \textrm{basic angle} &= \tan^{-1} \sqrt{3} \\ &= \frac{\pi}{3} \\ \arg z &= -\frac{\pi}{3} \end{align*}
basic angle
ar
g
z
=
tan
−
1
3
=
3
π
=
−
3
π
arg
z
n
=
10
arg
z
+
2
k
π
=
10
(
−
π
3
)
+
4
π
=
2
π
3
■
\begin{align*} \arg z^{n} &= 10 \arg z + 2k\pi \\ &= 10\left(-\frac{\pi}{3}\right) + 4\pi \\ &= \frac{2\pi}{3} \; \blacksquare \end{align*}
ar
g
z
n
=
10
ar
g
z
+
2
kπ
=
10
(
−
3
π
)
+
4
π
=
3
2
π
■
Back to top ▲