2013 H2 Mathematics Paper 1 Question 8

Complex Numbers

Answers

w=2r,  argw=θπ3{\left|w\right| = 2r, \; \arg w = \theta - \frac{\pi}{3}}
Out of syllabus
θ=π24{\theta = \frac{\pi}{24}}

Full solutions

(i)

w=(13i)z=(2eiπ3)(reiθ)=2rei(θπ3)\begin{align*} w &= (1 - \sqrt{3} \mathrm{i})z \\ &= \left(2\,\mathrm{e}^{ \mathrm{i} \frac{- \pi}{3} }\right)\left( r \mathrm{e}^{\mathrm{i}\theta}\right) \\ &= 2r \mathrm{e}^{\mathrm{i}(\theta - \frac{\pi}{3})} \end{align*}
w=2r  argw=θπ3  \begin{gather*} \left|w\right| = 2r \; \blacksquare \\ \arg w = \theta - \frac{\pi}{3} \; \blacksquare \end{gather*}

(ii)

Out of syllabus

(iii)

arg(z10w2)=π10argz2argw=π10θ2(θπ3)=π\begin{gather*} \arg \left( \frac{z^{10}}{w^2} \right) = \pi \\ 10\arg z - 2 \arg w = \pi \\ 10 \theta - 2 \left( \theta - \frac{\pi}{3} \right) = \pi \\ \end{gather*}
8θ=π3θ=π24  \begin{align*} 8 \theta &= \frac{\pi}{3} \\ \theta &= \frac{\pi}{24} \; \blacksquare \end{align*}