2008 H2 Mathematics Paper 1 Question 8

Complex Numbers

Answers

z13=8{z_1^3 = -8}
a=3,  b=6{a = -3, \; b=6}
z=1+3i,{z=1 + \sqrt{3}\mathrm{i}, } z=13i{z=1 - \sqrt{3}\mathrm{i}} or z=12{z=- \frac{1}{2}}

Full solutions

(i)

w3=(1+3i)3=(1+3i)2(1+3i)=(1+2i3)(1+3i)=(2+23i)(1+3i)=2+23i23i+2(3)i2=8  \begin{align*} w^3 &= (1 + \sqrt{3}\mathrm{i})^3 \\ &= (1 + \sqrt{3}\mathrm{i})^2(1 + \sqrt{3}\mathrm{i}) \\ &= (1+2\mathrm{i}-3)(1 + \sqrt{3}\mathrm{i}) \\ &= (-2 + 2\sqrt{3}\mathrm{i})(1 + \sqrt{3}\mathrm{i}) \\ &= -2 + 2\sqrt{3}\mathrm{i} -2 \sqrt{3}\mathrm{i}+2(3)\mathrm{i}^2 \\ &= -8 \; \blacksquare \end{align*}

(ii)

Substituting z=z1{z=z_1} into the equation,
2z3+az2+bz+4=02(8)+a(2+23i)+b(1+3i)+4=0(122a+b)+(2a3+3b)i=0\begin{gather*} 2z^3 + az^2 + bz + 4 = 0 \\ 2(-8) + a(-2 + 2\sqrt{3}\mathrm{i}) + b(1 + \sqrt{3}\mathrm{i}) + 4 = 0 \\ (-12-2a+b) + (2a\sqrt{3}+\sqrt{3}b)\mathrm{i} = 0 \end{gather*}
Comparing real and imaginary parts,
122a+b=02a3+3b=0\begin{align} && \quad -12-2a+b = 0 \\ && \quad 2a\sqrt{3}+\sqrt{3}b = 0 \end{align}
Solving (1) and (2) simultaneously,
a=3,  b=6  a=-3, \; b=6 \; \blacksquare

(iii)

Since all coefficients are real, by the conjugate root theorem, w=13i{w^* = 1 - \sqrt{3}\mathrm{i}} is also a root
2z33z2+6z+4=(z(1+3i))(z(13i))(cz+d)=((z1)2(3i)2)(cz+d)=(z22z+4)(cz+d)\begin{align*} & 2 z^3 - 3 z^2 + 6 z + 4 \\ & = \Big(z-(1 + \sqrt{3}\mathrm{i})\Big)\Big(z-(1 - \sqrt{3}\mathrm{i})\Big)(cz+d) \\ & = \Big((z-1)^2 - (\sqrt{3}\mathrm{i})^2\Big)(cz+d) \\ &= (z^2 - 2 z + 4)(cz+d) \\ \end{align*}
Comparing coefficients,
c=2,  d=44=1c=2, \; d=\frac{4}{4}=1
2z33z2+6z+4=0(z(1+3i))(z(13i))(2z+1)=0z=1+3i,  z=13i   or   z=12  \begin{gather*} 2 z^3 - 3 z^2 + 6 z + 4 = 0 \\ \Big(z-(1 + \sqrt{3}\mathrm{i})\Big)\Big(z-(1 - \sqrt{3}\mathrm{i})\Big)(2z+1) = 0 \\ z= 1 + \sqrt{3}\mathrm{i}, \; z=1 - \sqrt{3}\mathrm{i} \; \textrm{ or } \; z=- \frac{1}{2} \; \blacksquare \end{gather*}