2008 H2 Mathematics Paper 2 Question 3

Complex Numbers

Answers

p=1{\left| p \right| = 1}
argp=2θ{\arg p = 2 \theta}
θ=π5   or   θ=2π5{\theta = \frac{\pi}{5} \; \textrm{ or } \; \theta = \frac{2\pi}{5}}
Out of syllabus

Full solutions

(a)

p=ww=reiθreiθ=e2iθ\begin{align*} p &= \frac{w}{w^*} \\ &= \frac{r\mathrm{e}^{\mathrm{i}\theta}}{r\mathrm{e}^{-\mathrm{i}\theta}} \\ &= \mathrm{e}^{2\mathrm{i}\theta} \end{align*}
p=1  argp=2θ  \begin{align*} &\left| p \right| = 1 \; \blacksquare \\ &\arg p = 2 \theta \; \blacksquare \end{align*}
p5=e10iθp^5 = \mathrm{e}^{10\mathrm{i}\theta}
Given that p5{p^5} is real and positive, for kZ,{k\in \mathbb{Z},}
argp5=2kπ10θ=2kπθ=kπ5\begin{align*} \arg p^5 &= 2k\pi \\ 10 \theta &= 2k\pi \\ \theta &= \frac{k\pi}{5} \end{align*}
Since 0<θ<12π,{0 < \theta < \frac{1}{2}\pi, } k=1,2{k=1,2}
θ=15π   or   θ=25π  \theta = \frac{1}{5}\pi \; \textrm{ or } \; \theta = \frac{2}{5}\pi \; \blacksquare

(b)

Out of syllabus