2019 H2 Mathematics Paper 1 Question 1

Complex Numbers

Answers

b=a{b=- a}
c=7a{c=- 7 a}
d=15a{d=15 a}

Full solutions

Since a,b,c,d{a,b,c,d} are real numbers, by the conjugate root theorem, z=2i{z=2 - \mathrm{i}} is the third root of the equation
az3+bz2+cz+d=a(z(2+i))(z(2i))(z+3)=a((z2)2i2)(z+3)=a(z24z+5)(z+3)=a(z34z2+5z+3z212z+15)=a(z3z27z+15)\begin{align*} & az^3 + bz^2 + cz + d \\ & = a \Big(z-(2 + \mathrm{i})\Big)\Big(z-(2 - \mathrm{i})\Big)(z + 3) \\ & = a\Big((z-2)^2 - \mathrm{i}^2\Big)(z + 3) \\ & = a(z^2 - 4 z + 5)(z + 3) \\ & = a(z^3 - 4 z^2 + 5 z + 3 z^2 - 12 z + 15) \\ & = a(z^3 - z^2 - 7 z + 15) \end{align*}
Comparing coefficients,
z2:b=a  z:c=7a  z0:d=15a  \begin{align*} &z^2:& b &=- a \; \blacksquare \\ &z:& c &=- 7 a \; \blacksquare \\ &z^0:& d &=15 a \; \blacksquare \\ \end{align*}