2011 H2 Mathematics Paper 1 Question 10

Complex Numbers

Answers

22i,  2+2i{2-2\mathrm{i}, \; -2+2\mathrm{i}}
1i,  3+i{-1-\mathrm{i}, \; -3+\mathrm{i}}
Out of syllabus
Out of syllabus

Full solutions

(i)

Let z=x+yi{z=x+y\mathrm{i}}
(x+yi)2=8ix2y2+2xyi=8i\begin{gather*} (x+y\mathrm{i})^2 = -8i \\ x^2 - y^2 + 2xy\mathrm{i} = -8i \end{gather*}
Comparing real and imaginary parts,
x2y2=02xy=8\begin{align} &&\quad x^2 - y^2 &= 0 \\ &&\quad 2xy &= -8 \\ \end{align}
Substituting y=4x{\displaystyle y=-\frac{4}{x}} into (1),{(1),}
x216x2=0x4=16x=±2\begin{gather*} x^2 - \frac{16}{x^2} = 0 \\ x^4 = 16 \\ x = \pm 2 \end{gather*}
Substituting x=±2{\displaystyle x=\pm 2} into y=4x,{y = \displaystyle -\frac{4}{x},}
y=2y=\mp 2
z=22i   or   2+2i  z=2-2\mathrm{i} \; \textrm{ or } \; -2+2\mathrm{i} \; \blacksquare

(ii)

w=b±b24ac2a=4±424(4+2i)2=4±8i2\begin{align*} w &= \frac{-b\pm \sqrt{b^2-4ac}}{2a} \\ &= \frac{-4 \pm \sqrt{4^2-4(4+2\mathrm{i})}}{2} \\ &= \frac{-4 \pm \sqrt{-8\mathrm{i}}}{2} \\ \end{align*}
Using answers to (i),
w=4+(22i)2   or   w=4+(2+2i)2w=\frac{-4 + (2 - 2\mathrm{i}) }{2} \; \textrm{ or } \; w=\frac{-4 + (-2 + 2\mathrm{i}) }{2}
w=1i   or   w=3+i  w=-1-\mathrm{i} \; \textrm{ or } \; w=-3+\mathrm{i} \; \blacksquare

(iii)

Out of syllabus

(iv)

Out of syllabus