2007 H2 Mathematics Paper 1 Question 3

Complex Numbers

Answers

Out of syllabus
w=1+2i{w=- 1 + 2 \mathrm{i}}

Full solutions

(a)

Out of syllabus

(b)

(a+bi)(abi)+2(a+bi)=3+4ia2+b2+2a+2bi=3+4i\begin{gather*} (a + b\mathrm{i})(a - b\mathrm{i}) + 2(a + b\mathrm{i}) = 3 + 4 \mathrm{i} \\ a^2 + b^2 + 2a + 2b\mathrm{i} = 3 + 4 \mathrm{i} \end{gather*}
Comparing real and imaginary parts,
a2+2a+b2=32b=4\begin{align} && \quad a^2 + 2a + b^2 &= 3 \\ && \quad 2b &= 4 \\ \end{align}
b=2b = 2
a2+2a+22=3a2+2a+1=0(a+1)2=0a=1\begin{align*} a^2 + 2a + 2^2 &= 3 \\ a^2 + 2a + 1 &= 0 \\ (a + 1)^2 &= 0 \\ a &= - 1 \end{align*}
w=1+2i  w=- 1 + 2 \mathrm{i} \; \blacksquare