Math Repository
about
topic
al
year
ly
Yearly
2016
P2 Q4
Topical
Complex Numbers
16 P2 Q4
2016 H2 Mathematics Paper 2 Question 4
Complex Numbers
Answers
(a)
Out of syllabus
(bi)
Out of syllabus
(bii)
Smallest positive whole number
n
=
7
{n = 7}
n
=
7
Full solutions
(a)
Out of syllabus
(bi)
Out of syllabus
(bii)
arg
(
w
)
=
−
π
4
\arg(w) = - \frac{\pi}{4}
ar
g
(
w
)
=
−
4
π
arg
(
w
∗
w
n
)
=
π
2
arg
(
w
∗
)
+
arg
(
w
n
)
=
π
2
+
2
k
π
\begin{align*} \arg\left( w^* w^n \right) &= \frac{\pi}{2} \\ \arg\left( w^* \right) + \arg \left( w^n \right) &= \frac{\pi}{2} + 2k \pi \\ \end{align*}
ar
g
(
w
∗
w
n
)
ar
g
(
w
∗
)
+
ar
g
(
w
n
)
=
2
π
=
2
π
+
2
kπ
where
k
∈
Z
{k \in \mathbb{Z}}
k
∈
Z
−
(
−
π
4
)
+
n
(
−
π
4
)
=
π
2
+
2
k
π
−
n
(
π
4
)
=
π
4
+
2
k
π
−
n
=
1
+
8
k
n
=
−
1
−
8
k
\begin{gather*} -\left( - \frac{\pi}{4} \right) + n \left( - \frac{\pi}{4} \right) = \frac{\pi}{2} + 2k \pi \\ - n \left( \frac{\pi}{4} \right) = \frac{\pi}{4} + 2k \pi \\ -n = 1 + 8k \\ n = -1 - 8k \end{gather*}
−
(
−
4
π
)
+
n
(
−
4
π
)
=
2
π
+
2
kπ
−
n
(
4
π
)
=
4
π
+
2
kπ
−
n
=
1
+
8
k
n
=
−
1
−
8
k
For the smallest positive whole number value of
n
,
{n, }
n
,
k
=
−
1
{k=-1}
k
=
−
1
n
=
−
1
+
8
=
7
■
\begin{align*} n &= -1 + 8 \\ &= 7 \; \blacksquare \end{align*}
n
=
−
1
+
8
=
7
■
Back to top ▲