ω2ω3ω4=(1−i)2=1−2i+i2=−2i■=−2i(1−i)=−2i+2i2=−2−2i■=(−2i)2=−4■ Substituting them into the equation,
−4+p(−2−2i)+39(−2i)+q(1−i)+58=0(2p+q+54)+(−2p−78−q)i=0 Comparing real and imaginary parts,
−2p+q−2p−q=−54=78 Solving
(1) and
(2) simultaneously,
pq=−6■=−66■