Math Repository
about
topic
al
year
ly
Yearly
2021
P1 Q4
Topical
Complex Numbers
21 P1 Q4
2021 H2 Mathematics Paper 1 Question 4
Complex Numbers
Answers
(a)
∣
z
∣
=
1
{\left|z\right|=1}
∣
z
∣
=
1
arg
z
=
π
4
{\arg z=\frac{\pi}{4}}
ar
g
z
=
4
π
z
2
=
i
{z^2=\mathrm{i}}
z
2
=
i
(bii)
0
{0}
0
Full solutions
(a)
z
=
(
e
i
π
16
)
2
e
i
−
π
8
=
e
i
π
8
e
i
−
π
8
=
e
i
π
4
\begin{align*} z &= \frac{\left(\mathrm{e}^{ \mathrm{i} \frac{\pi}{16} }\right)^2}{\mathrm{e}^{ \mathrm{i} \frac{- \pi}{8} }} \\ &= \frac{\mathrm{e}^{ \mathrm{i} \frac{\pi}{8} }}{\mathrm{e}^{ \mathrm{i} \frac{- \pi}{8} }} \\ &= \mathrm{e}^{ \mathrm{i} \frac{\pi}{4} } \end{align*}
z
=
e
i
8
−
π
(
e
i
16
π
)
2
=
e
i
8
−
π
e
i
8
π
=
e
i
4
π
Hence
∣
z
∣
=
1
■
{\left|z\right|=1 \; \blacksquare}
∣
z
∣
=
1
■
and
arg
z
=
π
4
■
{\arg z = \frac{\pi}{4} \; \blacksquare}
ar
g
z
=
4
π
■
z
2
=
(
e
i
π
4
)
2
=
e
i
π
2
=
i
■
\begin{align*} z^2 &= \left( \mathrm{e}^{ \mathrm{i} \frac{\pi}{4} } \right)^2 \\ &= \mathrm{e}^{ \mathrm{i} \frac{\pi}{2} } \\ &= \mathrm{i} \; \blacksquare \end{align*}
z
2
=
(
e
i
4
π
)
2
=
e
i
2
π
=
i
■
(bi)
(
cos
θ
+
i
sin
θ
)
(
1
+
cos
θ
−
i
sin
θ
)
=
e
i
θ
(
1
+
e
−
i
θ
)
=
e
i
θ
+
e
i
θ
e
−
i
θ
=
e
i
θ
+
1
=
1
+
cos
θ
+
i
sin
θ
■
\begin{align*} & (\cos \theta + \mathrm{i}\sin\theta)(1+\cos \theta - \mathrm{i}\sin\theta) \\ &= \mathrm{e}^{\mathrm{i}\theta}(1+\mathrm{e}^{-\mathrm{i}\theta}) \\ &= \mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{\mathrm{i}\theta}\mathrm{e}^{-\mathrm{i}\theta} \\ &= \mathrm{e}^{\mathrm{i}\theta} + 1 \\ &= 1 + \cos \theta + \mathrm{i}\sin\theta \; \blacksquare \end{align*}
(
cos
θ
+
i
sin
θ
)
(
1
+
cos
θ
−
i
sin
θ
)
=
e
i
θ
(
1
+
e
−
i
θ
)
=
e
i
θ
+
e
i
θ
e
−
i
θ
=
e
i
θ
+
1
=
1
+
cos
θ
+
i
sin
θ
■
(bii)
From (a) and (bi), we have
z
(
1
+
z
∗
)
=
1
+
z
z
2
=
i
\begin{align} &&\quad z(1+z^*) &= 1 + z \\ &&\quad z^2 &= \mathrm{i} \end{align}
z
(
1
+
z
∗
)
z
2
=
1
+
z
=
i
(
1
+
z
)
4
+
(
1
+
z
∗
)
4
=
(
z
(
1
+
z
∗
)
)
4
+
(
1
+
z
∗
)
4
=
(
1
+
z
∗
)
4
(
z
4
+
1
)
=
(
1
+
z
∗
)
4
(
(
z
2
)
2
+
1
)
=
(
1
+
z
∗
)
4
(
i
2
+
1
)
=
0
■
\begin{align*} & (1+z)^4 + (1+z^*)^4 \\ & = \Big( z(1+z^*) \Big)^4 + (1+z^*)^4 \\ &= (1+z^*)^4 (z^4+1) \\ &= (1+z^*)^4 \Big((z^2)^2+1\Big) \\ &= (1+z^*)^4 (\mathrm{i}^2+1) \\ &= 0 \; \blacksquare \end{align*}
(
1
+
z
)
4
+
(
1
+
z
∗
)
4
=
(
z
(
1
+
z
∗
)
)
4
+
(
1
+
z
∗
)
4
=
(
1
+
z
∗
)
4
(
z
4
+
1
)
=
(
1
+
z
∗
)
4
(
(
z
2
)
2
+
1
)
=
(
1
+
z
∗
)
4
(
i
2
+
1
)
=
0
■
Back to top ▲