2022 H2 Mathematics Paper 2 Question 3

Complex Numbers

Answers

z3=3.{|z_3| = \sqrt{3}.}
arg(z3)=730π.{\arg (z_3) = \frac{7}{30} \pi.}
z3n=21873.{\left| z_3^n \right| = 2187 \sqrt{3}.}
arg(z3n)=12π.{\arg \left( z_3^n \right) = - \frac{1}{2} \pi.}

Full solutions

(a)

z1=32+(3)2=23\begin{align*} |z_1| &= \sqrt{3^2 + (\sqrt{3})^2} \\ &= 2 \sqrt{3} \end{align*}
arg(z1)=tan133=16π\begin{align*} \arg (z_1) &= - \tan^{-1} \frac{\sqrt{3}}{3} \\ &= - \frac{1}{6} \pi \end{align*}
z3=z1×z2=23e16πi×12e25πi=3e730πi\begin{align*} z_3 &= z_1 \times z_2 \\ &= 2 \sqrt{3} \mathrm{e}^{- \frac{1}{6} \pi \mathrm{i}} \times \frac{1}{2} \mathrm{e}^{\frac{2}{5} \pi \mathrm{i}} \\ &= \sqrt{3} \mathrm{e}^{\frac{7}{30} \pi \mathrm{i}} \end{align*}
z3=3  arg(z3)=730π  \begin{align*} |z_3| &= \sqrt{3} \; \blacksquare \\ \arg (z_3) &= \frac{7}{30} \pi \; \blacksquare \end{align*}

(b)

(c)

For z3n{z_3^n} to be purely imaginary, for mZ,{m \in \mathbb{Z},}
arg(z3n)=π2+mπnarg(z3)=π2+mπ730πn=π2+mπn=157+307m\begin{align*} \arg (z_3^n) &= \frac{\pi}{2} + m\pi \\ n \arg (z_3) &= \frac{\pi}{2} + m\pi \\ \frac{7}{30} \pi n &= \frac{\pi}{2} + m\pi \\ n &= \frac{15}{7} + \frac{30}{7} m \end{align*}
Smallest positive integer value of n{n} occurs when m=3.{m=3.}
n=15n = 15
z3n=(3e730πi)15=(3)143e72πi=21873e12πi\begin{align*} z_3^n &= \left( \sqrt{3} \mathrm{e}^{\frac{7}{30} \pi \mathrm{i}} \right)^{15} \\ &= (\sqrt{3})^{14} \sqrt{3} \mathrm{e}^{\frac{7}{2}\pi \mathrm{i}} \\ &= 2187 \sqrt{3} \mathrm{e}^{- \frac{1}{2} \pi \mathrm{i}} \end{align*}
z3n=21873  arg(z3n)=12π  \begin{align*} \left| z_3^n \right| &= 2187 \sqrt{3} \; \blacksquare \\ \arg \left( z_3^n \right) &= - \frac{1}{2} \pi \; \blacksquare \end{align*}

Question Commentary

Parts (a) and (b) are (hopefully) standard work with complex numbers in modulus-argument form as well as the drawing of Argand diagrams.

The "purely imaginary" concept in part (c) comes hot on the heels of many schools setting questions in a similar vein for school exams (and last seen in our national exams in 2020 Paper 1 Question 4 and 2014 Paper 2 Question 4). The use of the table in the GC can also be really helpful to determine the least value of n{n} required.