Since all coefficients are real, by the conjugate root theorem,
w∗=1−2i is also a root
27z3+5z2+17z+295=(z−(1+2i))(z−(1−2i))(cz+d)=((z−1)2−(2i)2)(cz+d)=(z2−2z+5)(cz+d) Comparing coefficients,
c=27,d=5295=59 27z3+5z2+17z+295=0(z−(1+2i))(z−(1−2i))(27z+59)=0z=1+2i,z=1−2i or z=−2759■