Math Repository
about
topic
al
year
ly
Yearly
2018
P1 Q4
Topical
Equations
18 P1 Q4
2018 H2 Mathematics Paper 1 Question 4
Equations and Inequalities
Answers
(i)
x
=
−
1
−
3
,
{x=- 1 - \sqrt{3},\;}
x
=
−
1
−
3
,
−
1
+
3
,
{- 1 + \sqrt{3},\;}
−
1
+
3
,
−
1
,
{- 1,\;}
−
1
,
0
{0}
0
(ii)
−
1
−
3
<
x
<
−
1
{- 1 - \sqrt{3} < x < - 1}
−
1
−
3
<
x
<
−
1
or
0
<
x
<
−
1
+
3
{0 < x < - 1 + \sqrt{3}}
0
<
x
<
−
1
+
3
Full solutions
(i)
∣
2
x
2
+
3
x
−
2
∣
=
2
−
x
|2 x^2 + 3 x - 2|=2 - x
∣2
x
2
+
3
x
−
2∣
=
2
−
x
2
x
2
+
3
x
−
2
=
2
−
x
or
2
x
2
+
3
x
−
2
=
−
(
2
−
x
)
\begin{align} && \quad 2 x^2 + 3 x - 2 &= 2 - x \quad \textrm{ or} \\ && \quad 2 x^2 + 3 x - 2 &= -(2 - x) \\ \end{align}
2
x
2
+
3
x
−
2
2
x
2
+
3
x
−
2
=
2
−
x
or
=
−
(
2
−
x
)
From
(
1
)
,
{(1),}
(
1
)
,
2
x
2
+
4
x
−
4
=
0
x
2
+
2
x
−
2
=
0
\begin{align*} 2 x^2 + 4 x - 4 &= 0 \\ x^2 + 2 x - 2 &= 0 \\ \end{align*}
2
x
2
+
4
x
−
4
x
2
+
2
x
−
2
=
0
=
0
x
=
−
2
±
2
2
−
4
(
−
2
)
2
(
1
)
=
−
2
±
12
2
=
−
1
±
3
\begin{align*} x &= \frac{-2\pm\sqrt{2^2-4(-2)}}{2(1)} \\ &= \frac{-2\pm\sqrt{12}}{2} \\ &= -1 \pm \sqrt{3} \end{align*}
x
=
2
(
1
)
−
2
±
2
2
−
4
(
−
2
)
=
2
−
2
±
12
=
−
1
±
3
From
(
2
)
,
{(2),}
(
2
)
,
2
x
2
+
2
x
=
0
2
x
(
x
+
1
)
=
0
\begin{align*} 2 x^2 + 2 x &= 0 \\ 2x(x+1) &= 0 \end{align*}
2
x
2
+
2
x
2
x
(
x
+
1
)
=
0
=
0
x
=
0
or
x
=
−
1
x=0 \; \textrm{ or } \; x = -1
x
=
0
or
x
=
−
1
Hence the exact roots of the equation are:
x
=
−
1
−
3
,
■
x
=
−
1
+
3
,
■
x
=
−
1
,
■
x
=
0
■
\begin{align*} &x = - 1 - \sqrt{3}, \; \blacksquare \\ &x = - 1 + \sqrt{3}, \; \blacksquare \\ &x = - 1, \; \blacksquare \\ &x = 0 \; \blacksquare \end{align*}
x
=
−
1
−
3
,
■
x
=
−
1
+
3
,
■
x
=
−
1
,
■
x
=
0
■
(ii)
From the graphs, solution to
∣
2
x
2
+
3
x
−
2
∣
<
2
−
x
:
{|2 x^2 + 3 x - 2| < 2 - x: }
∣2
x
2
+
3
x
−
2∣
<
2
−
x
:
−
1
−
3
<
x
<
−
1
■
or
0
<
x
<
−
1
+
3
■
\begin{gather*} - 1 - \sqrt{3} < x < - 1 \; \blacksquare \\ \textrm{or } \; 0 < x < - 1 + \sqrt{3} \; \blacksquare \end{gather*}
−
1
−
3
<
x
<
−
1
■
or
0
<
x
<
−
1
+
3
■
Back to top ▲