2018 H2 Mathematics Paper 1 Question 4

Equations and Inequalities

Answers

x=13,  {x=- 1 - \sqrt{3},\;}1+3,  {- 1 + \sqrt{3},\;}1,  {- 1,\;}0{0}
13<x<1{- 1 - \sqrt{3} < x < - 1} or 0<x<1+3{0 < x < - 1 + \sqrt{3}}

Full solutions

(i)

2x2+3x2=2x|2 x^2 + 3 x - 2|=2 - x
2x2+3x2=2x or2x2+3x2=(2x)\begin{align} && \quad 2 x^2 + 3 x - 2 &= 2 - x \quad \textrm{ or} \\ && \quad 2 x^2 + 3 x - 2 &= -(2 - x) \\ \end{align}
From (1),{(1),}
2x2+4x4=0x2+2x2=0\begin{align*} 2 x^2 + 4 x - 4 &= 0 \\ x^2 + 2 x - 2 &= 0 \\ \end{align*}
x=2±224(2)2(1)=2±122=1±3\begin{align*} x &= \frac{-2\pm\sqrt{2^2-4(-2)}}{2(1)} \\ &= \frac{-2\pm\sqrt{12}}{2} \\ &= -1 \pm \sqrt{3} \end{align*}
From (2),{(2),}
2x2+2x=02x(x+1)=0\begin{align*} 2 x^2 + 2 x &= 0 \\ 2x(x+1) &= 0 \end{align*}
x=0   or   x=1x=0 \; \textrm{ or } \; x = -1
Hence the exact roots of the equation are:
x=13,  x=1+3,  x=1,  x=0  \begin{align*} &x = - 1 - \sqrt{3}, \; \blacksquare \\ &x = - 1 + \sqrt{3}, \; \blacksquare \\ &x = - 1, \; \blacksquare \\ &x = 0 \; \blacksquare \end{align*}

(ii)

From the graphs, solution to 2x2+3x2<2x:{|2 x^2 + 3 x - 2| < 2 - x: }
13<x<1  or   0<x<1+3  \begin{gather*} - 1 - \sqrt{3} < x < - 1 \; \blacksquare \\ \textrm{or } \; 0 < x < - 1 + \sqrt{3} \; \blacksquare \end{gather*}