2018 H2 Mathematics Paper 1 Question 3

Differential Equations (DEs)

Answers

dudx=6x3{\displaystyle \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{6}{x^3}}
y=3x2{y=3 - x^2}

Full solutions

(i)

y=ux2dydx=dudxx2+2ux\begin{gather*} y = ux^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}x^2 + 2ux \\ \end{gather*}
xdydx=dudxx3+2ux2\begin{equation} \quad x\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}x^3 + 2ux^2 \end{equation}
Substituting y=ux2{y=ux^2} and (1){(1)} into the original differential equation,
dudxx3+2ux2=2ux26dudxx3=6dudx=6x3  \begin{gather*} \frac{\mathrm{d}u}{\mathrm{d}x}x^3 + 2ux^2 = 2ux^2 - 6 \\ \frac{\mathrm{d}u}{\mathrm{d}x}x^3 = -6 \\ \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{6}{x^3} \; \blacksquare \end{gather*}

(ii)

dudx=6x3u=3x2+cyx2=3x2+cy=3+cx2\begin{align*} \frac{\mathrm{d}u}{\mathrm{d}x} &= - \frac{6}{x^{3}} \\ u &= \frac{3}{x^{2}} + c \\ \frac{y}{x^2} &= \frac{3}{x^{2}} + c \\ y &= 3+cx^2 \end{align*}
When x=1,y=2{x=1, y=2}
2=3(1)+c(1)2c=1\begin{gather*} 2 = 3(1)+c(1)^2 \\ c = -1 \end{gather*}
y=3x2  y = 3-x^2 \; \blacksquare