2018 H2 Mathematics Paper 2 Question 6

The Binomial Distribution

Answers

59<p<23{\frac{5}{9} < p < \frac{2}{3}}
0.430{0.430}

Full solutions

(i)

Let X{X} denote the r.v. of the number of times the bug takes the left fork in the game
XB(8,p)X \sim \textrm{B}(8,p)
P(finishes at D)=P(X=5)=(85)p5(1p)85=56p5q3  \begin{align*} & \textrm{P}(\textrm{finishes at } D) \\ & = \textrm{P}(X = 5) \\ & = {8 \choose 5} p^5 (1-p)^{8-5} \\ & = 56 p^5 q^3 \; \blacksquare \end{align*}

(ii)

P(finishes at C)=P(X=6)=(86)p6(1p)86=28p6q2\begin{align*} & \textrm{P}(\textrm{finishes at } C) \\ & = \textrm{P}(X = 6) \\ & = {8 \choose 6} p^6 (1-p)^{8-6} \\ & = 28 p^6 q^2 \end{align*}
P(finishes at E)=P(X=4)=(84)p4(1p)84=70p4q4\begin{align*} & \textrm{P}(\textrm{finishes at } E) \\ & = \textrm{P}(X = 4) \\ & = {8 \choose 4} p^4 (1-p)^{8-4} \\ & = 70 p^4 q^4 \end{align*}
Since the probability that the bug finishes at D{D} is greater than at any other endpoint,
P(finishes at D)>P(finishes at C)56p5q3>28p6q22q>p2(1p)>pp<23\begin{gather*} \textrm{P}(\textrm{finishes at } D) > \textrm{P}(\textrm{finishes at } C) \\ 56 p^5 q^3 > 28 p^6 q^2 \\ 2 q > p \\ 2 (1-p) > p \\ p < \frac{2}{3} \end{gather*}
P(finishes at D)>P(finishes at E)56p5q3>70p4q44p>5q4p>5(1p)p>59\begin{gather*} \textrm{P}(\textrm{finishes at } D) > \textrm{P}(\textrm{finishes at } E) \\ 56 p^5 q^3 > 70 p^4 q^4 \\ 4 p > 5 q \\ 4 p > 5 (1-p) \\ p > \frac{5}{9} \end{gather*}
Hence the possible range of values of p:{p:}
59<p<23  \frac{5}{9} < p < \frac{2}{3} \; \blacksquare

(iii)

At each fork, the probability of not being swallowed up by a black hole is 0.9{0.9}
P(not swallowed by black hole)=(0.9)8=0.430  \begin{align*} & \textrm{P}(\textrm{not swallowed by black hole}) \\ & = (0.9)^8 \\ &= 0.430 \; \blacksquare \end{align*}