Math Repository
about
topic
al
year
ly
Yearly
2018
P2 Q3
Topical
Vectors II
18 P2 Q3
2018 H2 Mathematics Paper 2 Question 3
Vectors II: Lines and Planes
Answers
(i)
D
(
−
5
,
−
4
,
3
)
{D \left( - 5, - 4, 3 \right)}
D
(
−
5
,
−
4
,
3
)
(ii)
4
x
+
45
y
+
20
z
=
200
{4 x + 45 y + 20 z = 200}
4
x
+
45
y
+
20
z
=
200
(iii)
58.
6
∘
{58.6^\circ}
58.
6
∘
(iv)
6.88
units
{6.88 \textrm{ units}}
6.88
units
Full solutions
(i)
B
C
→
=
O
C
→
−
O
B
→
=
(
−
10
0
2
)
\begin{align*} \overrightarrow{BC} &= \overrightarrow{OC} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ \end{align*}
BC
=
OC
−
OB
=
−
10
0
2
Since
A
B
C
D
{ABCD}
A
BC
D
is a parallelogram,
A
D
→
=
B
C
→
O
D
→
−
O
A
→
=
B
C
→
O
D
→
=
O
A
→
+
B
C
→
=
(
5
−
4
1
)
+
(
−
10
0
2
)
=
(
−
5
−
4
3
)
\begin{align*} \overrightarrow{AD} &= \overrightarrow{BC} \\ \overrightarrow{OD} - \overrightarrow{OA} &= \overrightarrow{BC} \\ \overrightarrow{OD} &= \overrightarrow{OA} + \overrightarrow{BC} \\ &= \begin{pmatrix} 5 \\ - 4 \\ 1 \end{pmatrix} + \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} - 5 \\ - 4 \\ 3 \end{pmatrix} \end{align*}
A
D
O
D
−
O
A
O
D
=
BC
=
BC
=
O
A
+
BC
=
5
−
4
1
+
−
10
0
2
=
−
5
−
4
3
Coordinates of
D
(
−
5
,
−
4
,
3
)
■
{D \left( - 5, - 4, 3 \right)\; \blacksquare}
D
(
−
5
,
−
4
,
3
)
■
(ii)
B
E
→
=
O
E
→
−
O
B
→
=
(
−
5
−
4
10
)
\begin{align*} \overrightarrow{BE} &= \overrightarrow{OE} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 5 \\ - 4 \\ 10 \end{pmatrix} \\ \end{align*}
BE
=
OE
−
OB
=
−
5
−
4
10
n
B
C
E
′
=
B
C
→
×
B
E
→
=
(
−
10
0
2
)
×
(
−
5
−
4
10
)
=
(
8
90
40
)
=
2
(
4
45
20
)
\begin{align*} \mathbf{n'_{BCE}} &= \overrightarrow{BC} \times \overrightarrow{BE} \\ &= \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} - 5 \\ - 4 \\ 10 \end{pmatrix} \\ &= \begin{pmatrix} 8 \\ 90 \\ 40 \end{pmatrix} \\ &= 2 \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \end{align*}
n
BCE
′
=
BC
×
BE
=
−
10
0
2
×
−
5
−
4
10
=
8
90
40
=
2
4
45
20
r
⋅
n
=
a
⋅
n
r
⋅
n
=
O
B
→
⋅
n
r
⋅
(
4
45
20
)
=
(
5
4
0
)
⋅
(
4
45
20
)
=
200
\begin{align*} \mathbf{r} \cdot \mathbf{n} &= \mathbf{a} \cdot \mathbf{n} \\ \mathbf{r} \cdot \mathbf{n} &= \overrightarrow{OB} \cdot \mathbf{n} \\ \mathbf{r} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} &= \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \\ &= 200 \end{align*}
r
⋅
n
r
⋅
n
r
⋅
4
45
20
=
a
⋅
n
=
OB
⋅
n
=
5
4
0
⋅
4
45
20
=
200
Cartesian equation of
B
C
E
:
{BCE: }
BCE
:
4
x
+
45
y
+
20
z
=
200
■
{4 x + 45 y + 20 z = 200 \; \blacksquare}
4
x
+
45
y
+
20
z
=
200
■
(iii)
A
B
→
=
O
B
→
−
O
A
→
=
(
0
8
−
1
)
\begin{align*} \overrightarrow{AB} &= \overrightarrow{OB} - \overrightarrow{OA} \\ &= \begin{pmatrix} 0 \\ 8 \\ - 1 \end{pmatrix} \\ \end{align*}
A
B
=
OB
−
O
A
=
0
8
−
1
n
base
′
=
A
B
→
×
B
C
→
=
(
0
8
−
1
)
×
(
−
10
0
2
)
=
(
16
10
80
)
=
2
(
8
5
40
)
\begin{align*} \mathbf{n'_{\textrm{base}}} &= \overrightarrow{AB} \times \overrightarrow{BC} \\ &= \begin{pmatrix} 0 \\ 8 \\ - 1 \end{pmatrix} \times \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} 16 \\ 10 \\ 80 \end{pmatrix} \\ &= 2 \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \end{align*}
n
base
′
=
A
B
×
BC
=
0
8
−
1
×
−
10
0
2
=
16
10
80
=
2
8
5
40
∣
n
1
⋅
n
2
∣
=
∣
n
1
∣
∣
n
2
∣
cos
θ
\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta
∣
n
1
⋅
n
2
∣
=
∣
n
1
∣
∣
n
2
∣
cos
θ
∣
(
4
45
20
)
⋅
(
8
5
40
)
∣
=
∣
(
4
45
20
)
∣
∣
(
8
5
40
)
∣
cos
θ
∣
1057
∣
=
(
2441
)
(
1689
)
cos
θ
\begin{align*} \left|\begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \right| &= \left| \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \right| \left| \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \right| \cos \theta \\ \left|1057 \right| &= (\sqrt{2441}) (\sqrt{1689}) \cos \theta \end{align*}
4
45
20
⋅
8
5
40
∣
1057
∣
=
4
45
20
8
5
40
cos
θ
=
(
2441
)
(
1689
)
cos
θ
cos
θ
=
1057
(
2441
)
(
1689
)
θ
=
58.
6
∘
■
\begin{align*} \cos \theta &= \frac{1057}{(\sqrt{2441})(\sqrt{1689})} \\ \theta &= 58.6^\circ \; \blacksquare \end{align*}
cos
θ
θ
=
(
2441
)
(
1689
)
1057
=
58.
6
∘
■
(iv)
Let
M
{M}
M
denote the midpoint of edge
A
D
{AD}
A
D
O
M
→
=
O
A
→
+
O
D
→
2
=
(
5
−
4
1
)
+
(
−
5
−
4
3
)
2
=
(
0
−
4
2
)
\begin{align*} \overrightarrow{OM} &= \frac{\overrightarrow{OA}+\overrightarrow{OD}}{2} \\ &= \frac{\begin{pmatrix} 5 \\ - 4 \\ 1 \end{pmatrix}+\begin{pmatrix} - 5 \\ - 4 \\ 3 \end{pmatrix}}{2} \\ &= \begin{pmatrix} 0 \\ - 4 \\ 2 \end{pmatrix} \end{align*}
OM
=
2
O
A
+
O
D
=
2
5
−
4
1
+
−
5
−
4
3
=
0
−
4
2
B
M
→
=
O
M
→
−
O
B
→
=
(
−
5
−
8
2
)
\begin{align*} \overrightarrow{BM} &= \overrightarrow{OM} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 5 \\ - 8 \\ 2 \end{pmatrix} \\ \end{align*}
BM
=
OM
−
OB
=
−
5
−
8
2
Shortest distance from
M
{M}
M
to
B
C
E
{BCE}
BCE
=
∣
B
M
→
⋅
n
^
B
C
E
∣
=
∣
(
−
5
−
8
2
)
⋅
(
4
45
20
)
∣
∣
(
4
45
20
)
∣
=
∣
−
20
−
360
+
40
∣
16
+
2025
+
400
=
340
2441
=
6.88
units
■
\begin{align*} & = \left| \overrightarrow{BM} \cdot \mathbf{\hat{n}_{BCE}} \right| \\ &= \frac{\left|\begin{pmatrix} - 5 \\ - 8 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \right|}{\left| \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix}\right|} \\ &= \frac{\left|- 20 - 360 + 40 \right|}{\sqrt{16 + 2025 + 400}} \\ &= \frac{340}{\sqrt{2441}} \\ &= 6.88 \textrm{ units} \; \blacksquare \end{align*}
=
BM
⋅
n
^
BCE
=
4
45
20
−
5
−
8
2
⋅
4
45
20
=
16
+
2025
+
400
∣
−
20
−
360
+
40
∣
=
2441
340
=
6.88
units
■
Back to top ▲