2018 H2 Mathematics Paper 2 Question 3

Vectors II: Lines and Planes

Answers

D(5,4,3){D \left( - 5, - 4, 3 \right)}
4x+45y+20z=200{4 x + 45 y + 20 z = 200}
58.6{58.6^\circ}
6.88 units{6.88 \textrm{ units}}

Full solutions

(i)

BC=OCOB=(1002)\begin{align*} \overrightarrow{BC} &= \overrightarrow{OC} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ \end{align*}
Since ABCD{ABCD} is a parallelogram,
AD=BCODOA=BCOD=OA+BC=(541)+(1002)=(543)\begin{align*} \overrightarrow{AD} &= \overrightarrow{BC} \\ \overrightarrow{OD} - \overrightarrow{OA} &= \overrightarrow{BC} \\ \overrightarrow{OD} &= \overrightarrow{OA} + \overrightarrow{BC} \\ &= \begin{pmatrix} 5 \\ - 4 \\ 1 \end{pmatrix} + \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} - 5 \\ - 4 \\ 3 \end{pmatrix} \end{align*}
Coordinates of D(5,4,3)  {D \left( - 5, - 4, 3 \right)\; \blacksquare}

(ii)

BE=OEOB=(5410)\begin{align*} \overrightarrow{BE} &= \overrightarrow{OE} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 5 \\ - 4 \\ 10 \end{pmatrix} \\ \end{align*}
nBCE=BC×BE=(1002)×(5410)=(89040)=2(44520)\begin{align*} \mathbf{n'_{BCE}} &= \overrightarrow{BC} \times \overrightarrow{BE} \\ &= \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} - 5 \\ - 4 \\ 10 \end{pmatrix} \\ &= \begin{pmatrix} 8 \\ 90 \\ 40 \end{pmatrix} \\ &= 2 \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \end{align*}
rn=anrn=OBnr(44520)=(540)(44520)=200\begin{align*} \mathbf{r} \cdot \mathbf{n} &= \mathbf{a} \cdot \mathbf{n} \\ \mathbf{r} \cdot \mathbf{n} &= \overrightarrow{OB} \cdot \mathbf{n} \\ \mathbf{r} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} &= \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \\ &= 200 \end{align*}
Cartesian equation of BCE:{BCE: } 4x+45y+20z=200  {4 x + 45 y + 20 z = 200 \; \blacksquare}

(iii)

AB=OBOA=(081)\begin{align*} \overrightarrow{AB} &= \overrightarrow{OB} - \overrightarrow{OA} \\ &= \begin{pmatrix} 0 \\ 8 \\ - 1 \end{pmatrix} \\ \end{align*}
nbase=AB×BC=(081)×(1002)=(161080)=2(8540)\begin{align*} \mathbf{n'_{\textrm{base}}} &= \overrightarrow{AB} \times \overrightarrow{BC} \\ &= \begin{pmatrix} 0 \\ 8 \\ - 1 \end{pmatrix} \times \begin{pmatrix} - 10 \\ 0 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} 16 \\ 10 \\ 80 \end{pmatrix} \\ &= 2 \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \end{align*}
n1n2=n1n2cosθ\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta
(44520)(8540)=(44520)(8540)cosθ1057=(2441)(1689)cosθ\begin{align*} \left|\begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \right| &= \left| \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \right| \left| \begin{pmatrix} 8 \\ 5 \\ 40 \end{pmatrix} \right| \cos \theta \\ \left|1057 \right| &= (\sqrt{2441}) (\sqrt{1689}) \cos \theta \end{align*}
cosθ=1057(2441)(1689)θ=58.6  \begin{align*} \cos \theta &= \frac{1057}{(\sqrt{2441})(\sqrt{1689})} \\ \theta &= 58.6^\circ \; \blacksquare \end{align*}

(iv)

Let M{M} denote the midpoint of edge AD{AD}
OM=OA+OD2=(541)+(543)2=(042)\begin{align*} \overrightarrow{OM} &= \frac{\overrightarrow{OA}+\overrightarrow{OD}}{2} \\ &= \frac{\begin{pmatrix} 5 \\ - 4 \\ 1 \end{pmatrix}+\begin{pmatrix} - 5 \\ - 4 \\ 3 \end{pmatrix}}{2} \\ &= \begin{pmatrix} 0 \\ - 4 \\ 2 \end{pmatrix} \end{align*}
BM=OMOB=(582)\begin{align*} \overrightarrow{BM} &= \overrightarrow{OM} - \overrightarrow{OB} \\ &= \begin{pmatrix} - 5 \\ - 8 \\ 2 \end{pmatrix} \\ \end{align*}
Shortest distance from M{M} to BCE{BCE}
=BMn^BCE=(582)(44520)(44520)=20360+4016+2025+400=3402441=6.88 units  \begin{align*} & = \left| \overrightarrow{BM} \cdot \mathbf{\hat{n}_{BCE}} \right| \\ &= \frac{\left|\begin{pmatrix} - 5 \\ - 8 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} \right|}{\left| \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix}\right|} \\ &= \frac{\left|- 20 - 360 + 40 \right|}{\sqrt{16 + 2025 + 400}} \\ &= \frac{340}{\sqrt{2441}} \\ &= 6.88 \textrm{ units} \; \blacksquare \end{align*}